Lehmer's conjecture for polynomials satisfying a congruence divisibility condition and an analogue for elliptic curves

被引:0
|
作者
Silverman, Joseph H. [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2012年 / 24卷 / 03期
关键词
Lehmer conjecture; elliptic curve; canonical height; HEIGHT; POINTS;
D O I
10.5802/jtnb.820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A number of authors have proven explicit versions of Lehmer's conjecture for polynomials whose coefficients are all congruent to 1 modulo m. We prove a similar result for polynomials f (X) that are divisible in (Z/mZ) [X] by a polynomial of the form 1 + X + ... + X-n for some n >= epsilon deg(f). We also formulate and prove an analogous statement for elliptic curves.
引用
收藏
页码:751 / 772
页数:22
相关论文
共 38 条