An embedding theorem in Lorentz-Zygmund spaces

被引:16
|
作者
Greco, L
Moscariello, G
机构
[1] Dipartimento di Matematica e Application 'R. Caccioppoli', Compl. Universitario Monte S. Angelo, 80126 Napoli, Via Cintia
关键词
Sobolev embedding theorems; decreasing rearrangements; Hardy inequalities;
D O I
10.1007/BF00275795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Sobolev embedding theorems in Lorentz-Zygmund spaces. Some limiting cases are considered.
引用
收藏
页码:581 / 590
页数:10
相关论文
共 50 条
  • [1] LORENTZ-ZYGMUND SPACES
    BENNETT, C
    RUDNICK, K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A139 - A139
  • [2] A note on Lorentz-Zygmund spaces
    Oba, Hiroto
    Sato, Enji
    Sato, Yuichi
    GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (03) : 533 - 548
  • [3] On generalized Lorentz-Zygmund spaces
    Opic, B
    Pick, L
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (03): : 391 - 467
  • [4] Distinctness of spaces of Lorentz-Zygmund multipliers
    Hare, KE
    Mohanty, P
    STUDIA MATHEMATICA, 2005, 169 (02) : 143 - 161
  • [5] On decompositions in generalised Lorentz-Zygmund spaces
    Neves, JS
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (01): : 239 - 267
  • [6] COUNTEREXAMPLES FOR CLASSICAL OPERATORS ON LORENTZ-ZYGMUND SPACES
    SHARPLEY, R
    STUDIA MATHEMATICA, 1980, 68 (02) : 141 - 158
  • [7] Optimal interpolation in spaces of Lorentz-Zygmund type
    Evgeniy Pustylnik
    Journal d’Analyse Mathématique, 1999, 79 : 113 - 157
  • [8] Nikol'skii inequalities for Lorentz-Zygmund spaces
    Doktorski, Leo R. Ya
    Gendler, Dmitrij
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (03): : 659 - 672
  • [9] Compact embeddings of Besov spaces into Orlicz and Lorentz-Zygmund spaces
    Kühn, T
    Schonbek, T
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (04): : 1221 - 1243
  • [10] ASSOCIATE SPACES OF LOGARITHMIC INTERPOLATION SPACES AND GENERALIZED LORENTZ-ZYGMUND SPACES
    Besoy, Blanca F.
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 493 - 510