DISCRETE-TIME BILINEAR REPRESENTATION OF CONTINUOUS-TIME BILINEAR STATE-SPACE MODELS

被引:0
|
作者
Phan, Minh Q. [1 ]
Shi, Yunde [2 ]
Betti, Raimondo [3 ]
Longman, Richard W. [2 ,3 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Civil Engn, New York, NY 10027 USA
来源
SPACEFLIGHT MECHANICS 2012 | 2012年 / 143卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper develops techniques to represent a first-order continuous-time bilinear state-space model by various first-order discrete-time bilinear state-space models. Although it is always possible to discretize any well-behaved continuous-time model, of interest are techniques that keep the discrete-time models in first-order form while maintaining the simple bilinear structure of the original continuous-time model for control and estimation applications. Adams-Bashforth integration methods are found to meet these requirements, whereas simpler Euler methods produce unstable discrete-time models, and other methods do not produce models in bilinear form.
引用
收藏
页码:571 / +
页数:4
相关论文
共 50 条
  • [1] IDENTIFICATION OF INPUT-OUTPUT MAPS FOR BILINEAR DISCRETE-TIME STATE-SPACE MODELS
    Celik, Hails
    Phan, Minh Q.
    [J]. ASTRODYNAMICS 2011, PTS I - IV, 2012, 142 : 393 - 412
  • [2] Interval Observers for Continuous-time Bilinear Systems with Discrete-time Outputs
    Dinh, Thach Ngoc
    Ito, Hiroshi
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1418 - 1423
  • [3] On Stabilization of Continuous-time and Discrete-time Symmetric Bilinear Systems by Constant Controls
    Tie, Lin
    [J]. 2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [4] REPRESENTATION OF CONTINUOUS-TIME STATE EQUATIONS BY DISCRETE-TIME STATE EQUATIONS
    SHIEH, LS
    YATES, RE
    NAVARRO, JM
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1978, 8 (06): : 485 - 492
  • [5] On Discrete-time Bilinear Systems and Population Models
    Tie Lin
    Cai Kai-Yuan
    Lin Yan
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 7449 - 7452
  • [6] A CONDITION OF ERGODICITY FOR DISCRETE-TIME BILINEAR MODELS
    GUEGAN, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (09): : 537 - 540
  • [7] MINIMALITY AND INVERSIBILITY OF DISCRETE-TIME BILINEAR MODELS
    GUEGAN, D
    DINH, TP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (06): : 159 - 162
  • [8] Nonlinear System Identification — A Continuous-Time Bilinear State Space Approach
    Cheh-Han Lee
    Jer-Nan Juang
    [J]. The Journal of the Astronautical Sciences, 2012, 59 (1-2) : 398 - 420
  • [9] NONLINEAR SYSTEM IDENTIFICATION: A CONTINUOUS-TIME BILINEAR STATE SPACE APPROACH
    Lee, Cheh-Han
    Juang, Jer-Nan
    [J]. KYLE T. ALFRIEND ASTRODYNAMICS SYMPOSIUM, 2011, 139 : 421 - +
  • [10] A linear algebraic criterion for controllability of both continuous-time and discrete-time symmetric bilinear systems
    Tie, Lin
    Cai, Kai-Yuan
    Lin, Yan
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (04): : 898 - 910