Maximum distance separable convolutional codes

被引:112
|
作者
Rosenthal, J [1 ]
Smarandache, R [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
convolutional codes; MDS block codes;
D O I
10.1007/s002000050120
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A maximum distance separable (MDS) block code is a linear code whose distance is maximal among all linear block codes of rate kin. It is well known that MDS block codes do exist if the field size is more than n. In this paper we generalize this concept to the class of convolutional codes of a fixed rate k/n and a fixed code degree delta. In order to achieve, this result we will introduce a natural upper bound for the free distance generalizing the Singleton bound. The main result of the paper shows that this upper bound can be achieved in all cases if one allows sufficiently many field elements.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 50 条
  • [1] Maximum Distance Separable Convolutional Codes
    Joachim Rosenthal
    Roxana Smarandache
    [J]. Applicable Algebra in Engineering, Communication and Computing, 1999, 10 : 15 - 32
  • [2] MAXIMUM-DISTANCE-SEPARABLE CONVOLUTIONAL CODES
    JUSTESEN, J
    HUGHES, LR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) : 288 - 288
  • [3] Maximum Distance Separable 2D Convolutional Codes
    Climent, Joan-Josep
    Napp, Diego
    Perea, Carmen
    Pinto, Raquel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (02) : 669 - 680
  • [4] Maximum distance separable poset codes
    Jong Yoon Hyun
    Hyun Kwang Kim
    [J]. Designs, Codes and Cryptography, 2008, 48 : 247 - 261
  • [5] Maximum distance separable poset codes
    Hyun, Jong Yoon
    Kim, Hyun Kwang
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (03) : 247 - 261
  • [6] PUNCTURED MAXIMUM DISTANCE SEPARABLE CODES
    FEYLING, C
    [J]. ELECTRONICS LETTERS, 1993, 29 (05) : 470 - 471
  • [7] MAXIMUM DISTANCE SEPARABLE MULTILEVEL CODES
    DAROCHA, VC
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (03) : 547 - 548
  • [8] PSEUDOCYCLIC MAXIMUM-DISTANCE-SEPARABLE CODES
    KRISHNA, A
    SARWATE, DV
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) : 880 - 884
  • [9] On the Threshold of Maximum-Distance Separable Codes
    Kindarji, Bruno
    Cohen, Gerard
    Chabanne, Herve
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1163 - 1167
  • [10] A NOTE ON MAXIMUM DISTANCE SEPARABLE (OPTIMAL) CODES
    VERMANI, LR
    JINDAL, SL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (01) : 136 - 137