Aperture Mask Interferometry with an Integral Field Spectrograph

被引:2
|
作者
Zimmerman, Neil [1 ,2 ]
Sivaramakrishnan, Anand [2 ,3 ,4 ]
Bernat, David [5 ]
Oppenheimer, Ben R. [2 ]
Hinkley, Sasha [6 ]
Lloyd, James P. [5 ]
Tuthill, Peter [7 ]
Brenner, Douglas [2 ]
Parry, Ian R. [8 ]
Simon, Michal [4 ]
Krist, John E. [9 ]
Pueyo, Laurent [10 ]
机构
[1] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[2] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA
[3] Space Telescope Sci Inst, Baltimore, MD 21218 USA
[4] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[5] Cornell Univ, Ithaca, NY 14853 USA
[6] CALTECH, Pasadena, CA 91125 USA
[7] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[8] Univ Cambridge, Astron Inst, Cambridge CB3 OHA, England
[9] Jet Prop Lab, Pasadena, CA 91109 USA
[10] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21212 USA
来源
基金
美国国家科学基金会;
关键词
BROWN DWARF; IMAGING SURVEY; DYNAMIC-RANGE; SPECKLE NOISE; GJ; 802B; A-TYPE; COMPANIONS; PLANETS; BINARY; STARS;
D O I
10.1117/12.926204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A non-redundant pupil mask placed in front of a low-resolution integral field spectrograph (IFS) adds a spectral dimension to high angular resolution imaging behind adaptive optics systems. We demonstrate the first application of this technique, using the spectroscopic binary star system beta CrB as our target. The mask and IFS combination enabled us to measure the first low-resolution spectrum of the F3-F5 dwarf secondary component of beta CrB, at an angular separation 141 mas from its A5-A7Vp primary star. To record multi-wavelength closure phases, we collected interferograms simultaneously in 23 spectral channels spanning the J and H bands (1.1 mu m-1.8 mu m), using the Project 1640 IFS behind the 249-channel PalAO adaptive optics system on the Hale telescope at Palomar Observatory. In addition to providing physical information about the source, spectrally-resolved mask fringes have the potential to enhance detection limits over single filter observations. While the overall dynamic range of our observation suffers from large systematic calibration errors, the information gleaned from the full channel range improves the dynamic range by a factor of 3 to 4 over the best single channel.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The spectrograph units for the HARMONI integral field spectrograph
    O'Brien, Kieran
    Allen, Jamie R.
    Lynn, James D.
    Thatte, Niranj An A.
    Bryson, Ian
    Clarke, Fraser
    Schnetler, Hermine
    Tecza, Matthias
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V, 2014, 9147
  • [2] An integral field spectrograph for SNAP
    Prieto, Eric
    Ealet, Anne
    Milliard, Bruno
    Aumeunier, Marie-Helene
    Bonissent, Alain
    Cerna, Cedric
    Crouzet, Pierre-Elie
    Karst, Pierre
    Kneib, Jean-Paul
    Malina, Roger
    Pamplona, Tony
    Rossin, Christelle
    Smadja, Gerard
    Vives, Sebastien
    SPACE TELESCOPES AND INSTRUMENTATION 2008: OPTICAL, INFRARED, AND MILLIMETER, PTS 1 AND 2, 2008, 7010
  • [3] An integral field spectrograph for SNAP
    Ealet, A
    Prieto, E
    Bonissent, A
    Malina, R
    Smadja, G
    Tilquin, A
    Bernstein, G
    Basa, S
    Fouchez, D
    LeFevre, O
    Mazure, A
    Aldering, G
    Amanullah, R
    Bohlin, R
    Bower, C
    Brown, M
    Campbell, M
    Carithers, W
    Commins, E
    Craig, W
    Day, C
    DeJongh, F
    Deustua, S
    Diehl, HT
    Dodelson, S
    Ellis, R
    Emmet, M
    Frieman, J
    Fruchter, A
    Gerdes, D
    Gladney, L
    Goldhaber, G
    Goobar, A
    Groom, D
    Heetderks, H
    Hoff, M
    Holland, S
    Huffer, M
    Hui, L
    Huterer, D
    Jain, B
    Jelinsky, P
    Karcher, A
    Kent, S
    Kahn, S
    Kim, A
    Kolbe, W
    Krieger, B
    Kushner, G
    Kuznetsova, N
    OPTICAL, INFRARED, AND MILLIMETER SPACE TELESCOPES, PTS 1-3, 2004, 5487 : 1587 - 1597
  • [4] An Integral Field Unit for the Binospec Spectrograph
    Fabricant, Daniel
    Ben-Ami, Sagi
    Chilingarian, Igor V.
    Fata, Robert
    Moran, Sean
    Paegert, Martin
    Smith, Matthew
    Zajac, Joseph
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2025, 137 (01)
  • [5] An Integral Field Spectrograph for the SNAP mission
    Ealet, A.
    Prieto, E.
    Bonissent, A.
    Malina, R.
    Aumeunier, M-H.
    Cerma, C.
    Smadja, G.
    Tilquin, A.
    SPACE TELESCOPES AND INSTRUMENTATION I: OPTICAL, INFRARED, AND MILLIMETER, PTS 1 AND 2, 2006, 6265
  • [6] A mega integral field spectrograph for the VLT
    Bacon, R
    Adam, G
    Cabrit, S
    Combes, F
    Davies, RL
    Emsellem, E
    Ferruit, P
    Franx, M
    Gilmore, G
    Guiderdoni, B
    Lefevre, O
    Morris, S
    Pécontal, E
    Prieto, E
    Sharples, R
    van der Werf, P
    de Zeeuw, PT
    SCIENTIFIC DRIVERS FOR ESO FUTURE VLT/VLTI INSTRUMENTATION, PROCEEDINGS, 2002, : 108 - 117
  • [7] The Solar EruptioN Integral Field Spectrograph
    Herde, Vicki L.
    Chamberlin, Phillip C.
    Schmit, Don
    Daw, Adrian
    Milligan, Ryan O.
    Polito, Vanessa
    Bose, Souvik
    Boyajian, Spencer
    Buedel, Paris
    Edgar, Will
    Gebben, Alex
    Gong, Qian
    Jacobsen, Ross
    Nell, Nicholas
    Schwab, Bennet
    Sims, Alan
    Summers, David
    Turner, Zachary
    Valade, Trace
    Wallace, Joseph
    SOLAR PHYSICS, 2024, 299 (08)
  • [8] The Oxford SWIFT integral field spectrograph
    Thatte, Niranjan
    Tecza, Matthias
    Clarke, Fraser
    Goodsall, Timothy
    Lynn, James
    Freeman, David
    Davies, Roger L.
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY, PTS 1- 3, 2006, 6269
  • [9] The new palomar integral field spectrograph
    Murphy, TW
    Matthews, K
    Soifer, BT
    IMAGING THE UNIVERSE IN THREE DIMENSIONS: ASTROPHYSICS WITH ADVANCED MULTI-WAVELENGTH IMAGING DEVICES, 2000, 195 : 200 - 205
  • [10] An integral field spectrograph utilizing mirrorlet arrays
    Chamberlin, Phillip C.
    Gong, Qian
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (09) : 8250 - 8259