Quantum signal transmission through a single-qubit chain

被引:12
|
作者
Greenberg, Y. S. [1 ]
Merrigan, C. [2 ]
Tayebi, A. [3 ,4 ]
Zelevinsky, V. [4 ,5 ]
机构
[1] Novosibirsk State Tech Univ, Dept Phys & Tech, Novosibirsk 630092, Russia
[2] William Jewell Coll, Liberty, MO 64068 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, Coll Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[5] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 09期
基金
美国国家科学基金会;
关键词
UNIFIED THEORY; TRANSITION; TRANSPORT; DYNAMICS; SYSTEM;
D O I
10.1140/epjb/e2013-40190-4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A system of a two-level atom of an impurity (qubit) inserted into a periodic chain coupled to the continuum is studied with the use of the effective non-Hermitian Hamiltonian. Exact solutions are derived for the quasistationary eigenstates, their complex energies, and transport properties. Due to the presence of the qubit, two long-lived states corresponding to the ground and excited states of the qubit emerge outside the Bloch energy band. These states remain essentially localized at the qubit even in the limit of sufficiently strong coupling between the chain and the environment when the super-radiant states are formed. The transmission through the chain is studied as a function of the continuum coupling strength and the chain-qubit coupling; the perfect resonance transmission takes place through isolated resonances at weak and strong continuum coupling, while the transmission is lowered in the intermediate regime.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantum signal transmission through a single-qubit chain
    Y. S. Greenberg
    C. Merrigan
    A. Tayebi
    V. Zelevinsky
    [J]. The European Physical Journal B, 2013, 86
  • [2] Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits
    Kliuchnikov, Vadym
    Maslov, Dmitri
    Mosca, Michele
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (01) : 161 - 172
  • [3] Quantum thermometry by single-qubit dephasing
    Sholeh Razavian
    Claudia Benedetti
    Matteo Bina
    Yahya Akbari-Kourbolagh
    Matteo G. A. Paris
    [J]. The European Physical Journal Plus, 134
  • [4] Single-qubit optical quantum fingerprinting
    Horn, RT
    Babichev, SA
    Marzlin, KP
    Lvovsky, AI
    Sanders, BC
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (15)
  • [5] Quantum thermometry by single-qubit dephasing
    Razavian, Sholeh
    Benedetti, Claudia
    Bina, Matteo
    Akbari-Kourbolagh, Yahya
    Paris, Matteo G. A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [6] Simulation of single-qubit open quantum systems
    Sweke, Ryan
    Sinayskiy, Ilya
    Petruccione, Francesco
    [J]. PHYSICAL REVIEW A, 2014, 90 (02):
  • [7] Single-qubit operations on the Kane quantum computer
    Wellard, CJ
    Hollenberg, LCL
    Pakes, CI
    [J]. NANOTECHNOLOGY, 2002, 13 (05) : 570 - 575
  • [8] Visually quantifying single-qubit quantum memory
    Chang, Wan-Guan
    Ju, Chia-Yi
    Chen, Guang-Yin
    Chen, Yueh-Nan
    Ku, Huan-Yu
    [J]. arXiv, 2023,
  • [9] Visually quantifying single-qubit quantum memory
    Chang, Wan-Guan
    Ju, Chia-Yi
    Chen, Guang-Yin
    Chen, Yueh-Nan
    Ku, Huan-Yu
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [10] Single-qubit reaped quantum state tomography
    Choi, Mahn-Soo
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)