Combining tau-PET and fMRI meta-analyses for patient-centered prediction of cognitive decline in Alzheimer's disease

被引:13
|
作者
Biel, Davina [1 ]
Luan, Ying [1 ]
Brendel, Matthias [2 ]
Hager, Paul [1 ]
Dewenter, Anna [1 ]
Moscoso, Alexis [3 ,4 ]
Svaldi, Diana Otero [5 ]
Higgins, Ixavier A. [5 ]
Pontecorvo, Michael [6 ]
Roemer, Sebastian [1 ,7 ]
Steward, Anna [1 ]
Rubinski, Anna [1 ]
Zheng, Lukai [1 ]
Schoell, Michael [3 ,4 ,8 ]
Shcherbinin, Sergey [5 ]
Ewers, Michael [1 ,9 ]
Franzmeier, Nicolai [1 ,10 ]
机构
[1] Ludwig Maximilians Univ Munchen, Inst Stroke & Dementia Res ISD, Univ Hosp, D-81377 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Nucl Med, Univ Hosp, Munich, Germany
[3] Univ Gothenburg, Wallenberg Ctr Mol & Translat Med, Gothenburg, Sweden
[4] Univ Gothenburg, Sahlgrenska Acad, Inst Neurosci & Physiol, Dept Psychiat & Neurochem, Gothenburg, Sweden
[5] Eli Lilly & Co, Indianapolis, IN 46285 USA
[6] Avid Radiopharmaceut, Philadelphia, PA USA
[7] Ludwig Maximilians Univ Munchen, Dept Neurol, Univ Hosp, Munich, Germany
[8] UCL Inst Neurol, Dept Neurodegenerat Dis, London, England
[9] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[10] Munich Cluster Syst Neurol SyNergy, Munich, Germany
关键词
Alzheimer's disease; Tau-PET; fMRI; Cognitive decline; Precision medicine; FUNCTIONAL CONNECTIVITY; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; RECOMMENDATIONS; IMPAIRMENT; PATHOLOGY; CRITERIA; MEMORY; TRACK;
D O I
10.1186/s13195-022-01105-5
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Tau-PET is a prognostic marker for cognitive decline in Alzheimer's disease, and the heterogeneity of tau-PET patterns matches cognitive symptom heterogeneity. Thus, tau-PET may allow precision-medicine prediction of individual tau-related cognitive trajectories, which can be important for determining patient-specific cognitive endpoints in clinical trials. Here, we aimed to examine whether tau-PET in cognitive-domain-specific brain regions, identified via fMRI meta-analyses, allows the prediction of domain-specific cognitive decline. Further, we aimed to determine whether tau-PET-informed personalized cognitive composites capture patient-specific cognitive trajectories more sensitively than conventional cognitive measures. Methods We included Alzheimer's Disease Neuroimaging Initiative (ADNI) participants classified as controls (i.e., amyloid-negative, cognitively normal, n = 121) or Alzheimer's disease-spectrum (i.e., amyloid-positive, cognitively normal to dementia, n = 140), plus 111 AVID-1451-A05 participants for independent validation (controls/Alzheimer's disease-spectrum=46/65). All participants underwent baseline F-18-flortaucipir tau-PET, amyloid-PET, and longitudinal cognitive testing to assess annual cognitive changes (i.e., episodic memory, language, executive functioning, visuospatial). Cognitive changes were calculated using linear mixed models. Independent meta-analytical task-fMRI activation maps for each included cognitive domain were obtained from the Neurosynth database and applied to tau-PET to determine tau-PET signal in cognitive-domain-specific brain regions. In bootstrapped linear regression, we assessed the strength of the relationship (i.e., partial R-2) between cognitive-domain-specific tau-PET vs. global or temporal-lobe tau-PET and cognitive changes. Further, we used tau-PET-based prediction of domain-specific decline to compose personalized cognitive composites that were tailored to capture patient-specific cognitive decline. Results In both amyloid-positive cohorts (ADNI [age = 75.99 +/- 7.69] and A05 [age = 74.03 +/- 9.03]), cognitive-domain-specific tau-PET outperformed global and temporal-lobe tau-PET for predicting future cognitive decline in episodic memory, language, executive functioning, and visuospatial abilities. Further, a tau-PET-informed personalized cognitive composite across cognitive domains enhanced the sensitivity to assess cognitive decline in amyloid-positive subjects, yielding lower sample sizes required for detecting simulated intervention effects compared to conventional cognitive endpoints (i.e., memory composite, global cognitive composite). However, the latter effect was less strong in A05 compared to the ADNI cohort. Conclusion Combining tau-PET with task-fMRI-derived maps of major cognitive domains facilitates the prediction of domain-specific cognitive decline. This approach may help to increase the sensitivity to detect Alzheimer's disease-related cognitive decline and to determine personalized cognitive endpoints in clinical trials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Combining tau-PET and fMRI meta-analyses for patient-centered prediction of cognitive decline in Alzheimer’s disease
    Davina Biel
    Ying Luan
    Matthias Brendel
    Paul Hager
    Anna Dewenter
    Alexis Moscoso
    Diana Otero Svaldi
    Ixavier A. Higgins
    Michael Pontecorvo
    Sebastian Römer
    Anna Steward
    Anna Rubinski
    Lukai Zheng
    Michael Schöll
    Sergey Shcherbinin
    Michael Ewers
    Nicolai Franzmeier
    Alzheimer's Research & Therapy, 14
  • [2] FMRI Complexity Correlates with Tau-PET and Cognitive Decline in Late-Onset and Autosomal Dominant Alzheimer's Disease
    Jann, Kay
    Boudreau, Julia
    Albrecht, Daniel
    Cen, Steven Y.
    Cabeen, Ryan P.
    Ringman, John M.
    Wang, Danny J. J.
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 95 (02) : 437 - 451
  • [3] Tau-PET imaging predicts cognitive decline and brain atrophy progression in early Alzheimer's disease
    Lagarde, Julien
    Olivieri, Pauline
    Tonietto, Matteo
    Tissot, Cecile
    Rivals, Isabelle
    Gervais, Philippe
    Caille, Fabien
    Moussion, Martin
    Bottlaender, Michel
    Sarazin, Marie
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2022, 93 (05): : 459 - 467
  • [4] Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer's disease
    Franzmeier, Nicolai
    Dewenter, Anna
    Frontzkowski, Lukas
    Dichgans, Martin
    Rubinski, Anna
    Neitzel, Julia
    Smith, Ruben
    Strandberg, Olof
    Ossenkoppele, Rik
    Buerger, Katharina
    Duering, Marco
    Hansson, Oskar
    Ewers, Michael
    SCIENCE ADVANCES, 2020, 6 (48)
  • [5] Tau-PET imaging as a molecular modality for Alzheimer's disease
    Ayubcha, Cyrus
    Rigney, Grant
    Borja, Austin J.
    Werner, Thomas
    Alavi, Abass
    AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 11 (05): : 374 - 386
  • [6] Early prediction of the Alzheimer's disease risk using Tau-PET and machine learning
    Wang, Lujia
    Zheng, Zhiyang
    Su, Yi
    Chen, Kewei
    Weidman, David A.
    Wu, Teresa
    Lo, Ben
    Lure, Fleming
    Li, Jing
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [7] Longitudinal tau-PET uptake and atrophy in atypical Alzheimer's disease
    Sintini, Irene
    Martin, Peter R.
    Graff-Radford, Jonathan
    Senjem, Matthew L.
    Schwarz, Christopher G.
    Machulda, Mary M.
    Spychalla, Anthony J.
    Drubach, Daniel A.
    Knopman, David S.
    Petersen, Ronald C.
    Lowe, Val J.
    Jack, Clifford R., Jr.
    Josephs, Keith A.
    Whitwell, Jennifer L.
    NEUROIMAGE-CLINICAL, 2019, 23
  • [8] Machine learning prediction of tau-PET in Alzheimer's disease using plasma, MRI, and clinical data
    Karlsson, Linda
    Vogel, Jacob
    Arvidsson, Ida
    Astrom, Kalle
    Strandberg, Olof
    Seidlitz, Jakob
    Bethlehem, Richard A. I.
    Stomrud, Erik
    Ossenkoppele, Rik
    Ashton, Nicholas J.
    Zetterberg, Henrik
    Blennow, Kaj
    Palmqvist, Sebastian
    Smith, Ruben
    Janelidze, Shorena
    La Joie, Renaud
    Rabinovici, Gil D.
    Binette, Alexa Pichet
    Mattsson-Carlgren, Niklas
    Hansson, Oskar
    ALZHEIMERS & DEMENTIA, 2025, 21 (02)
  • [9] Sex Differences in Longitudinal Tau-PET in Preclinical Alzheimer Disease: A Meta-Analysis
    Coughlan, Gillian T.
    Klinger, Hannah M.
    Boyle, Rory
    Betthauser, Tobey J.
    Binette, Alexa Pichet
    Christenson, Luke
    Chadwick, Trevor
    Hansson, Oskar
    Harrison, Theresa M.
    Healy, Brian
    Jacobs, Heidi I. L.
    Hanseeuw, Bernard
    Jonaitis, Erin
    Jack Jr, Clifford R.
    Johnson, Keith A.
    Langhough, Rebecca E.
    Properzi, Michael J.
    Rentz, Dorene M.
    Schultz, Aaron P.
    Smith, Ruben
    Seto, Mabel
    Johnson, Sterling C.
    Mielke, Michelle M.
    Shirzadi, Zahra
    Yau, Wai-Ying Wendy
    Manson, JoAnn E.
    Sperling, Reisa A.
    Vemuri, Prashanthi
    Buckley, Rachel F.
    Alzheimers Dis Neuroimaging Initiative
    JAMA NEUROLOGY, 2025,
  • [10] Tau-PET topological abnormality changes along with Alzheimer's disease progression
    Ding, Jie
    Shen, Chushu
    Wang, Zhenguo
    Yang, Yongfeng
    Liang, Dong
    Liu, Xin
    El Fakhri, Georges
    Lu, Jie
    Zhou, Yun
    Sun, Tao
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64