Artificial intelligence and the value of transparency

被引:37
|
作者
Walmsley, Joel [1 ]
机构
[1] Univ Coll Cork, Dept Philosophy, Cork, Ireland
关键词
Transparency; Explainability; Contestability; Machine learning; Bias;
D O I
10.1007/s00146-020-01066-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some recent developments in Artificial Intelligence-especially the use of machine learning systems, trained on big data sets and deployed in socially significant and ethically weighty contexts-have led to a number of calls for "transparency". This paper explores the epistemological and ethical dimensions of that concept, as well as surveying and taxonomising the variety of ways in which it has been invoked in recent discussions. Whilst "outward" forms of transparency (concerning the relationship between an AI system, its developers, users and the media) may be straightforwardly achieved, what I call "functional" transparency about the inner workings of a system is, in many cases, much harder to attain. In those situations, I argue that contestability may be a possible, acceptable, and useful alternative so that even if we cannot understand how a system came up with a particular output, we at least have the means to challenge it.
引用
收藏
页码:585 / 595
页数:11
相关论文
共 50 条
  • [1] Artificial intelligence and the value of transparency
    Joel Walmsley
    [J]. AI & SOCIETY, 2021, 36 : 585 - 595
  • [2] Transparency and reproducibility in artificial intelligence
    Haibe-Kains, Benjamin
    Adam, George Alexandru
    Hosny, Ahmed
    Khodakarami, Farnoosh
    Shraddha, Thakkar
    Kusko, Rebecca
    Sansone, Susanna-Assunta
    Tong, Weida
    Wolfinger, Russ D.
    Mason, Christopher E.
    Jones, Wendell
    Dopazo, Joaquin
    Furlanello, Cesare
    Waldron, Levi
    Wang, Bo
    McIntosh, Chris
    Goldenberg, Anna
    Kundaje, Anshul
    Greene, Casey S.
    Broderick, Tamara
    Hoffman, Michael M.
    Leek, Jeffrey T.
    Korthauer, Keegan
    Huber, Wolfgang
    Brazma, Alvis
    Pineau, Joelle
    Tibshirani, Robert
    Hastie, Trevor
    Ioannidis, John P. A.
    Quackenbush, John
    Aerts, Hugo J. W. L.
    [J]. NATURE, 2020, 586 (7829) : E14 - U7
  • [3] Transparency and reproducibility in artificial intelligence
    Benjamin Haibe-Kains
    George Alexandru Adam
    Ahmed Hosny
    Farnoosh Khodakarami
    Levi Waldron
    Bo Wang
    Chris McIntosh
    Anna Goldenberg
    Anshul Kundaje
    Casey S. Greene
    Tamara Broderick
    Michael M. Hoffman
    Jeffrey T. Leek
    Keegan Korthauer
    Wolfgang Huber
    Alvis Brazma
    Joelle Pineau
    Robert Tibshirani
    Trevor Hastie
    John P. A. Ioannidis
    John Quackenbush
    Hugo J. W. L. Aerts
    [J]. Nature, 2020, 586 : E14 - E16
  • [4] Towards Transparency by Design for Artificial Intelligence
    Felzmann, Heike
    Fosch-Villaronga, Eduard
    Lutz, Christoph
    Tamo-Larrieux, Aurelia
    [J]. SCIENCE AND ENGINEERING ETHICS, 2020, 26 (06) : 3333 - 3361
  • [5] Governmental Transparency in the Era of Artificial Intelligence
    van Engers, Tom M.
    de Vries, Dennis M.
    [J]. LEGAL KNOWLEDGE AND INFORMATION SYSTEMS (JURIX 2019), 2019, 322 : 33 - 42
  • [6] Transparency in Medical Artificial Intelligence Systems
    Quakulinski, Lars
    Koumpis, Adamantios
    Beyan, Oya Deniz
    [J]. INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2023, 17 (04) : 495 - 510
  • [7] Reply to: Transparency and reproducibility in artificial intelligence
    McKinney, Scott Mayer
    Karthikesalingam, Alan
    Tse, Daniel
    Kelly, Christopher J.
    Liu, Yun
    Corrado, Greg S.
    Shetty, Shravya
    [J]. NATURE, 2020, 586 (7829) : E17 - E18
  • [8] Reply to: Transparency and reproducibility in artificial intelligence
    Scott Mayer McKinney
    Alan Karthikesalingam
    Daniel Tse
    Christopher J. Kelly
    Yun Liu
    Greg S. Corrado
    Shravya Shetty
    [J]. Nature, 2020, 586 : E17 - E18
  • [9] Transparency and trust in artificial intelligence systems
    Schmidt, Philipp
    Biessmann, Felix
    Teubner, Timm
    [J]. JOURNAL OF DECISION SYSTEMS, 2020, 29 (04) : 260 - 278
  • [10] Towards Transparency by Design for Artificial Intelligence
    Heike Felzmann
    Eduard Fosch-Villaronga
    Christoph Lutz
    Aurelia Tamò-Larrieux
    [J]. Science and Engineering Ethics, 2020, 26 : 3333 - 3361