Hamiltonian Properties of DCell Networks

被引:36
|
作者
Wang, Xi [1 ]
Erickson, Alejandro [2 ]
Fan, Jianxi [1 ]
Jia, Xiaohua [3 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[3] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
来源
COMPUTER JOURNAL | 2015年 / 58卷 / 11期
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
DCell; data center networks; Hamiltonian; Hamiltonian connectivity; algorithm; fault tolerance; partial DCell; SERVER INTERCONNECTION; EDGE-PANCYCLICITY; PORT;
D O I
10.1093/comjnl/bxv019
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
DCell has been proposed for data centers as a server-centric interconnection network structure. DCell can support millions of servers with high network capacity by only using commodity switches. With one exception, we prove that a k level DCell built with n port switches is Hamiltonian-connected for k >= 0 and n >= 2. Our proof extends to all Generalized DCell connection rules for n >= 3. Then, we propose an O(t(k)) algorithm for finding a Hamiltonian path in DCell(k), where t(k) is the number of servers in DCell(k). Furthermore, we prove that DCell(k) is (n + k -4)-fault Hamiltonian-connected and (n + k -3)-fault Hamiltonian. In addition, we show that a partial DCell is Hamiltonian-connected if it conforms to a few practical restrictions.
引用
收藏
页码:2944 / 2955
页数:12
相关论文
共 50 条
  • [1] Reliability Evaluation of DCell Networks
    Wang, Xi
    He, Funan
    Han, Yuejuan
    You, Lantao
    [J]. ADVANCED HYBRID INFORMATION PROCESSING, 2018, 219 : 213 - 225
  • [2] Vertex-disjoint paths in DCell networks
    Wang, Xi
    Fan, Jianxi
    Lin, Cheng-Kuan
    Jia, Xiaohua
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2016, 96 : 38 - 44
  • [3] Hamiltonian properties of HCN and BCN networks
    Xiaoyu Du
    Cheng Cheng
    Zhijie Han
    Weibei Fan
    Shuai Ding
    [J]. The Journal of Supercomputing, 2023, 79 : 1622 - 1653
  • [4] Hamiltonian properties of HCN and BCN networks
    Du, Xiaoyu
    Cheng, Cheng
    Han, Zhijie
    Fan, Weibei
    Ding, Shuai
    [J]. JOURNAL OF SUPERCOMPUTING, 2023, 79 (02): : 1622 - 1653
  • [5] Hamiltonian properties of some compound networks
    Qin, Xiao-Wen
    Hao, Rong-Xia
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 239 : 174 - 182
  • [6] Pancyclic And Hamiltonian Properties Of Dragonfly Networks
    Huo, Jin
    Yang, Weihua
    [J]. COMPUTER JOURNAL, 2023, 67 (03): : 1201 - 1208
  • [7] Hamiltonian Properties of Bidimensional Compound Networks
    Du, Xiaoyu
    Qin, Keke
    Han, Zhijie
    Ding, Shuai
    [J]. PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 486 - 490
  • [8] HAMILTONIAN PROPERTIES OF ENHANCED HONEYCOMB NETWORKS
    Somasundari, M.
    Rajkumar, A.
    Raj, F. Simon
    George, A.
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (04): : 761 - 775
  • [9] HS-DCell: A Highly Scalable DCell-Based Server-Centric Topology for Data Center Networks
    Wang, Guijuan
    Zhang, Yazhi
    Yu, Jiguo
    Ma, Meijie
    Hu, Chunqiang
    Fan, Jianxi
    Zhang, Li
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2024,
  • [10] Strongly Menger-edge-connectedness of DCell networks
    Liu, Xuemei
    Meng, Jixiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 922 : 308 - 311