Genetic local search for multi-objective combinatorial optimization

被引:342
|
作者
Jaszkiewicz, A [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
关键词
multi-objective combinatorial optimization; metaheuristics; genetic local search;
D O I
10.1016/S0377-2217(01)00104-7
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper presents a new genetic local search (GLS) algorithm for mufti-objective combinatorial optimization (MOCO). The goal of the algorithm is to generate in a short time a set of approximately efficient solutions that will allow the decision maker to choose a good compromise solution. In each iteration, the algorithm draws at random a utility function and constructs a temporary population composed of a number of best solutions among the prior generated solutions. Then, a pair of solutions selected at random from the temporary population is recombined. Local search procedure is applied to each offspring. Results of the presented experiment indicate that the algorithm outperforms other mufti-objective methods based on GLS and a Pareto ranking-based mufti-objective genetic algorithm (GA) on travelling salesperson problem (TSP). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:50 / 71
页数:22
相关论文
共 50 条
  • [1] Combining Local Search and Elicitation for Multi-Objective Combinatorial Optimization
    Benabbou, Nawal
    Leroy, Cassandre
    Lust, Thibaut
    Perny, Patrice
    [J]. ALGORITHMIC DECISION THEORY (ADT 2019), 2019, 11834 : 1 - 16
  • [2] Specification of local search directions in genetic local search algorithms for multi-objective optimization problems
    Murata, T
    Ishibuchi, H
    Gen, M
    [J]. GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 441 - 448
  • [3] Multi-objective genetic local search algorithm
    Ishibuchi, H
    Murata, T
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 119 - 124
  • [4] Sets of interacting scalarization functions in local search for multi-objective combinatorial optimization problems
    Drugan, Madalina M.
    [J]. PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION-MAKING (MCDM), 2013,
  • [5] Learning to Balance Exploration and Exploitation in Pareto Local Search for Multi-objective Combinatorial Optimization
    Zhang, Haotian
    Shi, Jialong
    Sun, Jianyong
    Xu, Zongben
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 383 - 386
  • [6] Multi-Objective Portfolio Optimization and Rebalancing Using Genetic Algorithms with Local Search
    Soam, Vishal
    Palafox, Leon
    Iba, Hitoshi
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [7] A Local Optimization Framework for Multi-Objective Ergodic Search
    Ren, Zhongqiang
    Srinivasan, Akshaya Kesarimangalam
    Coffin, Howard
    Abraham, Ian
    Choset, Howie
    [J]. ROBOTICS: SCIENCE AND SYSTEM XVIII, 2022,
  • [8] Queued Pareto Local Search for Multi-Objective Optimization
    Inja, Maarten
    Kooijman, Chiel
    de Waard, Maarten
    Roijers, Diederik M.
    Whiteson, Shimon
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 589 - 599
  • [9] Multi-Objective Topology Optimization Method for Hybrid-Type Motors Combining Combinatorial Optimization and Local Search
    Hidaka, Yuki
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) : 1 - 4
  • [10] Multi-objective variable neighborhood search: an application to combinatorial optimization problems
    Duarte, Abraham
    Pantrigo, Juan J.
    Pardo, Eduardo G.
    Mladenovic, Nenad
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (03) : 515 - 536