Uniform Design method to Finding the Optimal Parameters for Support Vector Machine

被引:0
|
作者
Huang, Pin-Kao [1 ]
Chou, Jyh-Horng [1 ]
机构
[1] Natio Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung, Taiwan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Support vector machine (SVM) has become one of the most popular learning machines. However, it is difficult to constructing a highly effective model for predicting before the parameter of SVM are optimally determined. Two parameters, C and g, must be determined in the establishment of an efficient SVM model. The purpose of this paper is to use uniform design method for finding the optimal values of the two parameters in establishing an efficient SVM model. According to the uniform design method, the regression relation between input parameters and output root-mean-square error can be obtained. Then, we can find the optimal parameters form the regression equation. The results prove that the proposed method can effectively improve the prediction accuracy.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Uniform Design Method to Finding the Optimal Parameters for Machine Roughing
    Cai, Yan-Rou
    Chou, Jyh-Horng
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,
  • [2] New method for selecting parameters of support vector machine regression based on uniform design
    Li, Ming-Shan
    Wang, Zheng-Ming
    Zhang, Yi
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (08): : 2195 - 2199
  • [3] Optimal Regularization Parameters Selection for Laplacian Support Vector Machine
    Li Juntao
    Jia Yingmin
    Du Junping
    Li Wenlin
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 4, 2008, : 464 - +
  • [4] A Least Square Support Vector Machine Approach Based on Uniform Design Method for Structural Reliability Analysis
    Yu, Xiaolin
    Zheng, Hengbin
    Yan, Quansheng
    Li, Wei
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 3348 - 3353
  • [5] Modified Optimal Foraging Algorithm for Parameters Optimization of Support Vector Machine
    Sayed, Gehad Ismail
    Soliman, Mona
    Hassanien, Aboul Ella
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 23 - 32
  • [6] Optimization Method for Controller Parameters Using Support Vector Machine
    Saito, Toshiki
    Kikuchi, Ryo
    Atsumi, Takenori
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 157 - 162
  • [7] Support Vector Machine Applied to the Optimal Design of Composite Wing Panels
    dos Santos, Rogerio Rodrigues
    Machado, Tulio Gomes de Paula
    Castro, Saullo Giovani Pereira
    AEROSPACE, 2021, 8 (11)
  • [8] Bayesian support vector machine for optimal reliability design of modular systems
    Ling Chunyan
    Lei Jingzhe
    Kuo Way
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 228
  • [9] Calculation method of probability integration method parameters based on support vector machine
    Li, Pei-Xian
    Tan, Zhi-Xiang
    Yan, Li-Li
    Deng, Ka-Zhong
    Meitan Xuebao/Journal of the China Coal Society, 2010, 35 (08): : 1247 - 1251
  • [10] A support vector machine with integer parameters
    Angulta, Davide
    Ghio, Alessandro
    Pischiutta, Stefano
    Ridella, Sandro
    NEUROCOMPUTING, 2008, 72 (1-3) : 480 - 489