Robust Factorization Methods Using a Gaussian/Uniform Mixture Model

被引:13
|
作者
Zaharescu, Andrei [1 ]
Horaud, Radu [1 ]
机构
[1] INRIA Grenoble Rhone Alpes, F-38330 Montbonnot St Martin, France
关键词
Robust factorization; 3-D reconstruction; Multiple camera calibration; Data clustering; Expectation-maximization; EM; M-estimators; Outlier rejection; MOTION; SHAPE; UNCERTAINTY; ALGORITHM;
D O I
10.1007/s11263-008-0169-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the problem of building a class of robust factorization algorithms that solve for the shape and motion parameters with both affine (weak perspective) and perspective camera models. We introduce a Gaussian/uniform mixture model and its associated EM algorithm. This allows us to address parameter estimation within a data clustering approach. We propose a robust technique that works with any affine factorization method and makes it resilient to outliers. In addition, we show how such a framework can be further embedded into an iterative perspective factorization scheme. We carry out a large number of experiments to validate our algorithms and to compare them with existing ones. We also compare our approach with factorization methods that use M-estimators.
引用
收藏
页码:240 / 258
页数:19
相关论文
共 50 条
  • [1] Robust Factorization Methods Using a Gaussian/Uniform Mixture Model
    Andrei Zaharescu
    Radu Horaud
    [J]. International Journal of Computer Vision, 2009, 81
  • [2] A Gaussian Uniform Mixture Model for Robust Kalman Filtering
    Brunot, Mathieu
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 2656 - 2665
  • [3] DeepGUM: Learning Deep Robust Regression with a Gaussian-Uniform Mixture Model
    Lathuiliere, Stephane
    Mesejo, Pablo
    Alameda-Pineda, Xavier
    Horaud, Radu
    [J]. COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 205 - 221
  • [4] Using Gaussian-Uniform Mixture Models for Robust Time-Interval Measurement
    De Angelis, Alessio
    De Angelis, Guido
    Carbone, Paolo
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (12) : 3545 - 3554
  • [5] Model-Based Learning Using a Mixture of Mixtures of Gaussian and Uniform Distributions
    Browne, Ryan P.
    McNicholas, Paul D.
    Sparling, Matthew D.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (04) : 814 - 817
  • [6] A Variational Bayesian Gaussian Mixture-Nonnegative Matrix Factorization Model to Extract Movement Primitives for Robust Control
    Xie, Hongbo
    Mengersen, Kerrie
    Di, Changan
    Zhang, Yongjian
    Lipman, Justin
    Van Huffel, Sabine
    [J]. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2022, 52 (06) : 1258 - 1270
  • [7] Robust Foreground Segmentation Using Improved Gaussian Mixture Model and Optical Flow
    Fradi, Hajer
    Dugelay, Jean-Luc
    [J]. 2012 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2012, : 248 - 253
  • [8] Robust Background Generation Using a Modified Mixture of Gaussian Model for Object Detection
    Maik, Vivek
    Kim, Hyungtae
    Kim, Daehee
    Chae, Eunjung
    Paik, Joonki
    [J]. 18TH IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE 2014), 2014,
  • [9] ROBUST ONLINE MATRIX COMPLETION WITH GAUSSIAN MIXTURE MODEL
    Liu, Chunsheng
    Chen, Chunlei
    Shan, Hong
    Wang, Bin
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3422 - 3426
  • [10] IMAGE SEGMENTATION BY A ROBUST MODIFIED GAUSSIAN MIXTURE MODEL
    Zhang, Hui
    Wu, Q. M. Jonathan
    Thanh Minh Nguyen
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1478 - 1482