Minimal dominating sets in graph classes: Combinatorial bounds and enumeration

被引:33
|
作者
Couturier, Jean-Francois [1 ]
Heggernes, Pinar [2 ]
van 't Hof, Pim [2 ]
Kratsch, Dieter [1 ]
机构
[1] Univ Lorraine, LITA, F-57045 Metz 01, France
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
关键词
Minimal dominating sets; Enumeration algorithms; Combinatorial bounds; Graph classes; ALGORITHMS; INTERVAL;
D O I
10.1016/j.tcs.2013.03.026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The number of minimal dominating sets that a graph on n vertices can have is known to be at most 1.7159(n). This upper bound might not be tight, since no examples of graphs with 1.5705(n) or more minimal dominating sets are known. For several classes of graphs, we substantially improve the upper bound on the number of minimal dominating sets. At the same time, we give algorithms for enumerating all minimal dominating sets, where the running time of each algorithm is within a polynomial factor of the proved upper bound for the graph class in question. In several cases, we provide examples of graphs containing the maximum possible number of minimal dominating sets for graphs in that class, thereby showing the corresponding upper bounds to be tight. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 94
页数:13
相关论文
共 50 条
  • [1] Minimal Dominating Sets in Graph Classes: Combinatorial Bounds and Enumeration
    Couturier, Jean-Francois
    Heggernes, Pinar
    van't Hof, Pim
    Kratsch, Dieter
    SOFSEM 2012: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2012, 7147 : 202 - +
  • [2] On the Neighbourhood Helly of Some Graph Classes and Applications to the Enumeration of Minimal Dominating Sets
    Kante, Mamadou Moustapha
    Limouzy, Vincent
    Mary, Arnaud
    Nourine, Lhouari
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 289 - 298
  • [3] On the number of minimal dominating sets on some graph classes
    Couturier, Jean-Francois
    Letourneur, Romain
    Liedloff, Mathieu
    THEORETICAL COMPUTER SCIENCE, 2015, 562 : 634 - 642
  • [4] Combinatorial Bounds via Measure and Conquer: Bounding Minimal Dominating Sets and Applications
    Fomin, Fedor V.
    Grandoni, Fabrizio
    Pyatkin, Artem V.
    Stepanov, Alexey A.
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 5 (01)
  • [5] ON THE ENUMERATION OF MINIMAL DOMINATING SETS AND RELATED NOTIONS
    Kante, Mamadou Moustapha
    Limouzy, Vincent
    Mary, Arnaud
    Nourine, Lhouari
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 1916 - 1929
  • [6] INTERSECTION GRAPH OF MINIMAL DOMINATING SETS OF A GRAPH
    Acharya, B.
    Swaminathan, V.
    Baskar, A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (02) : 153 - 159
  • [7] Enumeration of minimal connected dominating sets for chordal graphs
    Golovach, Petr A.
    Heggernes, Pinar
    Kratsch, Dieter
    Saei, Reza
    DISCRETE APPLIED MATHEMATICS, 2020, 278 : 3 - 11
  • [8] Minimal dominating sets of cardinality two in a graph
    Jayaram, SR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (01): : 43 - 46
  • [9] Enumeration and maximum number of minimal dominating sets for chordal graphs
    Golovach, Petr A.
    Kratsch, Dieter
    Liedtoff, Mathieu
    Sayadi, Mohamed Yosri
    THEORETICAL COMPUTER SCIENCE, 2019, 783 : 41 - 52
  • [10] On the Enumeration and Counting of Minimal Dominating sets in Interval and Permutation Graphs
    Kante, Mamadou Moustapha
    Limouzy, Vincent
    Mary, Arnaud
    Nourine, Lhouari
    Uno, Takeaki
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 339 - 349