On the Kramers-Kronig relations

被引:34
|
作者
Carcione, Jose M. [1 ,2 ]
Cavallini, Fabio [1 ]
Ba, Jing [2 ]
Cheng, Wei [2 ]
Qadrouh, Ayman N. [3 ]
机构
[1] Ist Nazl Oceanog & Geofis Sperimentale OGS, Borgo Grotta Gigante 42c, I-34010 Trieste, Italy
[2] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Jiangsu, Peoples R China
[3] SAC KACST, POB 6086, Riyadh 11442, Saudi Arabia
关键词
Kramers-Kronig relations; Sokhotski-Plemelj equation; Causality; Viscoelasticity; Waves; Zener model; DISPERSION;
D O I
10.1007/s00397-018-1119-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We provide a new derivation of the Kramers-Kronig relations on the basis of the Sokhotski-Plemelj equation with detailed mathematical justifications. The relations hold for a causal function, whose Fourier transform is regular (holomorphic) and square-integrable. This implies analyticity in the lower complex plane and a Fourier transform that vanishes at the high-frequency limit. In viscoelasticity, we show that the complex and frequency-dependent modulus describing the stiffness does not satisfy the relation but the modulus minus its high-frequency value does it. This is due to the fact that despite its causality, the modulus is not square-integrable due to a non-null instantaneous response. The relations are obtained in addition for the wave velocity and attenuation factor. The Zener, Maxwell, and Kelvin-Voigt viscoelastic models illustrate these properties. We verify the Kramers-Kronig relations on experimental data of sound attenuation in seabottoms sediments.
引用
下载
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [1] On the Kramers-Kronig relations
    José M. Carcione
    Fabio Cavallini
    Jing Ba
    Wei Cheng
    Ayman N. Qadrouh
    Rheologica Acta, 2019, 58 : 21 - 28
  • [2] NOTE ON THE KRAMERS-KRONIG RELATIONS
    BRACHMAN, MK
    JOURNAL OF APPLIED PHYSICS, 1955, 26 (05) : 497 - 498
  • [3] Applications of Kramers-Kronig Relations
    Brezeanu, I. B.
    Paraschivoiu, P. A.
    Negroiu, R.
    Chiva, L. A.
    2017 IEEE 23RD INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2017, : 82 - 85
  • [4] Kramers-Kronig relations for an interferometer
    Kop, RHJ
    deVries, P
    Sprik, R
    Lagendijk, A
    OPTICS COMMUNICATIONS, 1997, 138 (1-3) : 118 - 126
  • [5] KRAMERS-KRONIG RELATIONS FOR INTERSTELLAR POLARIZATION
    MARTIN, PG
    ASTROPHYSICAL JOURNAL, 1975, 202 (02): : 389 - 392
  • [6] VALIDITY CONDITIONS FOR KRAMERS-KRONIG RELATIONS
    SHARNOFF, M
    AMERICAN JOURNAL OF PHYSICS, 1964, 32 (01) : 40 - &
  • [7] Kramers-Kronig relations for magnetoinductive waves
    Kalinin, Victor
    Solymar, Laszlo
    Shamonina, Ekaterina
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [8] KRAMERS-KRONIG RELATIONS IN NONLINEAR OPTICS
    HUTCHINGS, DC
    SHEIKBAHAE, M
    HAGAN, DJ
    VANSTRYLAND, EW
    OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (01) : 1 - 30
  • [9] NUMERICAL EVALUATION OF KRAMERS-KRONIG RELATIONS
    EMEIS, CA
    OOSTERHOFF, LJ
    DEVRIES, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 297 (1448) : 54 - +
  • [10] KRAMERS-KRONIG RELATIONS IN NONLINEAR OPTICS
    KADOR, L
    APPLIED PHYSICS LETTERS, 1995, 66 (22) : 2938 - 2939