共 10 条
Sampling and Processing Methods Impact Microbial Community Structure and Potential Activity in a Seasonally Anoxic Fjord: Saanich Inlet, British Columbia
被引:16
|作者:
Torres-Beltran, Monica
[1
]
Mueller, Andreas
[1
]
Scofield, Melanie
[1
]
Pachiadaki, Maria G.
[2
,3
]
Taylor, Craig
[3
]
Tyshchenko, Kateryna
[4
]
Michiels, Celine
[1
]
Lam, Phyllis
[5
,6
]
Ulloa, Osvaldo
[6
,7
,8
]
Jurgens, Klaus
[6
,9
]
Hyun, Jung-Ho
[6
,10
]
Edgcomb, Virginia P.
[2
,6
]
Crowe, Sean A.
[1
,6
,11
,12
]
Hallam, Steven J.
[1
,6
,12
,13
,14
]
机构:
[1] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC, Canada
[2] Bigelow Lab Ocean Sci, Boothbay, ME USA
[3] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[4] BC Canc Agcy, Terry Fox Lab, Vancouver, BC, Canada
[5] Univ Southampton, Natl Oceanog Ctr, Dept Ocean & Earth Sci, Southampton, Hants, England
[6] Working Grp 144, Sci Comm Oceanog Res, Vancouver, BC, Canada
[7] Univ Concepcion, Dept Oceanog, Concepcion, Chile
[8] Univ Concepcion, Inst Milenio Oceanog, Concepcion, Chile
[9] Leibniz Inst Baltic Sea Res, Dept Biol Oceanog, Warnemunde, Germany
[10] Hanyang Univ, Dept Marine Sci & Convergent Technol, Seoul, South Korea
[11] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC, Canada
[12] Univ British Columbia, ECOSCOPE Training Program, Vancouver, BC, Canada
[13] Univ British Columbia, Grad Program Bioinformat, Vancouver, BC, Canada
[14] Univ British Columbia, Peter Wall Inst Adv Studies, Vancouver, BC, Canada
基金:
加拿大自然科学与工程研究理事会;
美国能源部;
加拿大创新基金会;
关键词:
microbial ecology;
oxygen minimum zone;
standards of practice;
filtration methods;
amplicon sequencing;
OXYGEN-MINIMUM ZONES;
RIBOSOMAL-RNA;
GENE-EXPRESSION;
DIVERSITY;
BACTERIAL;
BACTERIOPLANKTON;
MICROORGANISMS;
ECOLOGY;
SULFUR;
WATERS;
D O I:
10.3389/fmars.2019.00132
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The Scientific Committee on Oceanographic Research (SCOR) Working Group 144 Microbial Community Responses to Ocean Deoxygenation workshop held in Vancouver, B.C on July 2014 had the primary objective of initiating a process to standardize operating procedures for compatible process rate and multi-omic (DNA, RNA, protein, and metabolite) data collection in marine oxygen minimum zones and other oxygen depleted waters. Workshop attendees participated in practical sampling and experimental activities in Saanich Inlet, British Columbia, a seasonally anoxic lord. Experiments were designed to compare and cross-calibrate in situ versus bottle sampling methods to determine effects on microbial community structure and potential activity when using different filter combinations, filtration methods, and sample volumes. Resulting biomass was preserved for small subunit ribosomal RNA (SSU or 16S rRNA) and SSU rRNA gene (rDNA) amplicon sequencing followed by downstream statistical and visual analyses. Results from these analyses showed that significant community shifts occurred between in situ versus on ship processed samples. For example, Bacteroidetes, Alphaproteobacteria, and Opisthokonta associated with on-ship filtration onto 0.4 mu m filters increased fivefold compared to on-ship in-line 0.22 mu m filters or 0.4 mu m filters processed and preserved in situ. In contrast, Planctomycetes associated with 0.4 mu m in situ filters increased fivefold compared to on-ship filtration onto 0.4 mu m filters and on-ship in-line 0.22 mu m filters. In addition, candidate divisions and Chloroflexi were primarily recovered when filtered onto 0.4 mu m filters in situ. Results based on rRNA:rDNA ratios for microbial indicator groups revealed previously unrecognized roles of candidate divisions, Desulfarculales, and Desulfuromandales in sulfur cycling, carbon fixation and fermentation within anoxic basin waters. Taken together, filter size and in situ versus on-ship filtration had the largest impact on recovery of microbial groups with the potential to influence downstream metabolic reconstruction and process rate measurements. These observations highlight the need for establishing standardized and reproducible techniques that facilitate cross-scale comparisons and more accurately assess in situ activities of microbial communities.
引用
收藏
页数:16
相关论文