Energetics of Ion Transport in NASICON-Type Electrolytes

被引:36
|
作者
Francisco, Brian E. [1 ]
Stoldt, Conrad R. [1 ]
M'Peko, Jean-Claude [2 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[2] Univ Sao Paulo, Inst Fis Sao Carlos, Grp Crescimento Cristais & Mat Ceram, BR-13566590 Sao Carlos, SP, Brazil
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 29期
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
CRYSTAL-CHEMISTRY; CONDUCTIVITY; DISORDER; ZIRCONIA; MOBILITY; P-31; TI;
D O I
10.1021/acs.jpcc.5b03286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein we report a study on the energetics of ion transport in NASICON-type solid electrolytes. A solgel procedure was used to synthesize NASICON-type lithium-ion conductors with nominal compositions Li1+XAlXGe2-X(PO4)(3) where 0 <= X <= 0.6. Trends in the conductivity and activation energy, including both enthalpic and entropic contributions, were examined with electrochemical impedance spectroscopy. Physical interpretations of these results are drawn from structural characterizations performed by synchrotron powder X-ray diffraction and Raman spectroscopy. Considering X = 0 -> 0.6, we conclude that initial drops in activation energy are driven by a growing Li+ population on M2 sites, while later increases in activation energy are driven by changes in average bottleneck size caused by the Al-for-Ge substitution. Values of the entropy of motion are rationalized physically by considering the changing configurational potential of the mobile Li+ population with changes in X. We conclude that entropic contributions to the free energy of activation amount to <= 22% of the enthalpic contributions at room temperature. These insights suggest that while entropic contributions are not insignificant, more attention should be paid to lowering the activation energy when designing a new NASICON-type conductor.
引用
收藏
页码:16432 / 16442
页数:11
相关论文
共 50 条
  • [1] On the dependence of ionic transport on crystal orientation in NaSICON-type solid electrolytes
    Ladenstein, Lukas
    Lunghammer, Sarah
    Wang, Eric Y.
    Miara, Lincoln J.
    Wilkening, H. Martin R.
    Redhammer, Guenther J.
    Rettenwander, Daniel
    [J]. JOURNAL OF PHYSICS-ENERGY, 2020, 2 (03):
  • [2] Superionic Transitions in NASICON-Type Solid Electrolytes
    Bukun, N. G.
    [J]. IONICS, 1996, 2 (01) : 63 - 68
  • [3] Identifying Migration Channels and Bottlenecks in Monoclinic NASICON-Type Solid Electrolytes with Hierarchical Ion-Transport Algorithms
    Zou, Zheyi
    Ma, Nan
    Wang, Aiping
    Ran, Yunbing
    Song, Tao
    He, Bing
    Ye, Anjiang
    Mi, Penghui
    Zhang, Liwen
    Zhou, Hang
    Jiao, Yao
    Liu, Jinping
    Wang, Da
    Li, Yajie
    Avdeev, Maxim
    Shi, Siqi
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (49)
  • [4] Investigation of ionic mobility in NASICON-type solid electrolytes
    Vyalikh, A.
    Vizgalov, V.
    Itkis, D. M.
    Meyer, D. C.
    [J]. 3RD EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES (EMCMRE-3), 2016, 758
  • [5] Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes
    Nkosi, Funeka P.
    Cuevas, Ignacio
    Valvo, Mario
    Mindemark, Jonas
    Mahun, Andrii
    Abbrent, Sabina
    Brus, Jiri
    Kobera, Libor
    Edstrom, Kristina
    [J]. ACS APPLIED ENERGY MATERIALS, 2024, 7 (10): : 4609 - 4619
  • [6] Assessing the Electrochemical Stability Window of NASICON-Type Solid Electrolytes
    Benabed, Yasmine
    Rioux, Maxime
    Rousselot, Steeve
    Hautier, Geoffroy
    Dolle, Mickael
    [J]. FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [7] Preparation and infiltration of NASICON-type solid electrolytes with microporous channels
    Lu, Xiaojuan
    Hai, Jiankang
    Zhang, Feng
    Li, Xinyu
    Li, Jing
    [J]. CERAMICS INTERNATIONAL, 2022, 48 (02) : 2203 - 2211
  • [8] Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes
    DeWees, Rachel
    Wang, Hui
    [J]. CHEMSUSCHEM, 2019, 12 (16) : 3713 - 3725
  • [9] Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation
    Tolganbek, Nurbol
    Serikkazyyeva, Assel
    Kalybekkyzy, Sandugash
    Sarsembina, Madina
    Kanamura, Kiyoshi
    Bakenov, Zhumabay
    Mentbayeva, Almagul
    [J]. MATERIALS ADVANCES, 2022, 3 (07): : 3055 - 3069
  • [10] Correlated Migration Invokes Higher Na+-Ion Conductivity in NaSICON-Type Solid Electrolytes
    Zhang, Zhizhen
    Zou, Zheyi
    Kaup, Kavish
    Xiao, Ruijuan
    Shi, Siqi
    Avdeev, Maxim
    Hu, Yong-Sheng
    Wang, Da
    He, Bing
    Li, Hong
    Huang, Xuejie
    Nazar, Linda F.
    Chen, Liquan
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (42)