The role of the attractive and the repulsive interactions in the nonpolar solvation dynamics in simple fluids from the gas-like to the liquid-like densities

被引:41
|
作者
Yamaguchi, T [1 ]
Kimura, Y [1 ]
Hirota, N [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 1999年 / 111卷 / 09期
关键词
D O I
10.1063/1.479715
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have performed molecular dynamics (MD) simulations of the nonpolar solvation dynamics in simple fluids composed of particles interacting through the Lennard-Jones (LJ) 12-6 potential or its repulsive part. The attractive or the repulsive part of the solute-solvent interaction is assumed to change on the excitation of a solute. We have followed the transition energy fluctuation of the solute by the equilibrium simulation. The division of the LJ potential followed the method of WCA [J. W. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)]. We have surveyed over a wide solvent density region from gas-like to liquid-like densities at the constant temperature. When the attractive part changes, the relaxation becomes faster with an increase of the solvent density. This result contradicts with previous theories that treat the nonpolar solvation dynamics in terms of the diffusion of solvent particles. The time scale of the initial part of the relaxation is well correlated with the static fluctuation divided by the static average, which suggests the importance of the curvature of the free energy surface in the initial part of the solvation. When the repulsive part changes, the initial part of the relaxation is almost density independent, determined by the binary motion between solute and solvent. It is consistent with the result that the static fluctuation is almost proportional to the static average, which indicates the absence of the static correlation between solvent particles. On the other hand, the solvation correlation function shows rather complicated density dependence at the longer time scale. In the case of the binary mixture solvent, the relaxation time is inversely proportional to the diffusion coefficient. On the basis of the nonpolar solvation dynamics, the validity of the isolated binary collision model for the vibrational energy relaxation is also discussed, and the recent hydrodynamic theory on the vibrational energy relaxation [B. J. Cherayil and M. D. Feyer, J. Chem. Phys. 107, 7642 (1997)] is critically examined. (C) 1999 American Institute of Physics. [S0021-9606(99)50233-X].
引用
收藏
页码:4169 / 4185
页数:17
相关论文
共 20 条
  • [1] Role of the attractive and the repulsive interactions in the nonpolar solvation dynamics in simple fluids from the gas-like to the liquid-like densities
    Yamaguchi, T.
    Kimura, Y.
    Hirota, N.
    Journal of Chemical Physics, 111 (09):
  • [2] Liquid-like and gas-like features of a simple fluid: An insight from theory and simulation
    Brazhkin, V. V.
    Fomin, Yu. D.
    Ryzhov, V. N.
    Tsiok, E. N.
    Trachenko, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 690 - 702
  • [3] Crossover from gas-like to liquid-like molecular diffusion in a simple supercritical fluid
    Ranieri, Umbertoluca
    Formisano, Ferdinando
    Gorelli, Federico A.
    Santoro, Mario
    Koza, Michael Marek
    De Francesco, Alessio
    Bove, Livia E.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] GAS-LIKE AND LIQUID-LIKE PHASE DUALISM IN POLYMERS
    BARANOV, VG
    FRENKEL, S
    JOURNAL OF POLYMER SCIENCE PART C-POLYMER SYMPOSIUM, 1977, (61): : 351 - 357
  • [5] Distinct molecular dynamics dividing liquid-like and gas-like supercritical hydrogens
    Yamaoka, Shutaro
    Hyeon-Deuk, Kim
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (38) : 22110 - 22118
  • [6] The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids
    Simeoni, G. G.
    Bryk, T.
    Gorelli, F. A.
    Krisch, M.
    Ruocco, G.
    Santoro, M.
    Scopigno, T.
    NATURE PHYSICS, 2010, 6 (07) : 503 - 507
  • [7] Transition from Gas-like to Liquid-like Behavior in Supercritical N2
    Proctor, J. E.
    Pruteanu, C. G.
    Morrison, I.
    Crowe, I. F.
    Loveday, J. S.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (21): : 6584 - 6589
  • [8] Constitutive model for solid-like, liquid-like, and gas-like phases of granular media and their numerical implementation
    Chen, Fuzhen
    Yan, Hong
    POWDER TECHNOLOGY, 2021, 390 : 369 - 386
  • [9] ELECTROKINETIC PROPERTIES OF AQUEOUS SUSPENSIONS OF RODLIKE FD VIRUS-PARTICLES IN THE GAS-LIKE AND LIQUID-LIKE PHASE
    HOSS, U
    BATZILL, S
    DEGGELMANN, M
    GRAF, C
    HAGENBUCHLE, M
    JOHNER, C
    KRAMER, H
    MARTIN, C
    OVERBECK, E
    WEBER, R
    MACROMOLECULES, 1994, 27 (12) : 3429 - 3431
  • [10] Experimental observation of gapped shear waves and liquid-like to gas-like dynamical crossover in active granular matter
    Cunyuan Jiang
    Zihan Zheng
    Yangrui Chen
    Matteo Baggioli
    Jie Zhang
    Communications Physics, 8 (1)