CONGRUENCES CONCERNING JACOBI POLYNOMIALS AND APERY-LIKE FORMULAE

被引:13
|
作者
Pilehrood, Kh Hessami [1 ]
Pilehrood, T. Hessami [1 ]
Tauraso, R. [2 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
Congruence; finite central binomial sum; harmonic sum; Bernoulli number; Euler number; Jacobi polynomials; CENTRAL BINOMIAL COEFFICIENTS; BERNOULLI; NUMBERS;
D O I
10.1142/S1793042112501035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p > 5 be a prime. We prove congruences modulo p(3-d) for sums of the general form Sigma((p -3)/2)(k=0) ((2k)(k))t(k)/(2k + 1)(d+1) and Sigma((p-1)/2)(k=1) ((2k)(k))t(k)/kd with d = 0, 1. We also consider the special case t = (-1)(d)/16 of the former sum, where the congruences hold modulo p(5-d).
引用
收藏
页码:1789 / 1811
页数:23
相关论文
共 50 条
  • [1] CONGRUENCES SATISFIED BY APERY-LIKE NUMBERS
    Chan, Heng Huat
    Cooper, Shaun
    Sica, Francesco
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (01) : 89 - 97
  • [2] Super congruences for two Apery-like sequences
    Sun, Zhi-Hong
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (10) : 1685 - 1713
  • [3] Congruences for certain families of Apery-like sequences
    Sun, Zhi-Hong
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (03) : 875 - 912
  • [4] PROOF OF SOME CONJECTURAL CONGRUENCES INVOLVING APERY AND APERY-LIKE NUMBERS
    Mao, Guo-shuai
    Wang, Lilong
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (02) : 508 - 527
  • [5] ON THE DIVISIBILITY OF SUMS INVOLVING APeRY-LIKE POLYNOMIALS
    Yang, Sheng
    Liu, Ji-Cai
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (02) : 203 - 208
  • [6] Congruences involving binomial coefficients and Apery-like numbers
    Sun, Zhi-Hong
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (3-4): : 315 - 346
  • [7] On some congruences involving Apery-like numbers Sn
    Mao, Guo-Shuai
    Li, Danrui
    Ma, Xinmin
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (02) : 181 - 197
  • [8] On three conjectural congruences of Z.-H. Sun involving Apery and Apery-like numbers
    Mao, Guo-Shuai
    ZhaoSong, An-Bang
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 197 - 216
  • [10] On two conjectures of Sun concerning Apery-like series
    Charlton, Steven
    Gangl, Herbert
    Lai, Li
    Xu, Ce
    Zhao, Jianqiang
    [J]. FORUM MATHEMATICUM, 2023, 35 (06) : 1533 - 1547