Bifurcations of twisted heteroclinic loop with resonant eigenvalues

被引:2
|
作者
Jin, Yinlai [1 ]
Zhu, Xiaowei [1 ]
Liu, Yuanyuan [1 ]
Xu, Han [1 ]
Zhang, Nana [1 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276005, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Bifurcation; Poincare map; Heteroclinic loop; Resonant; Twisted; MELNIKOV VECTOR; ORBITS;
D O I
10.1007/s11071-018-4075-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In a small tubular neighborhood of the heteroclinic orbits, we establish a local coordinate system by using the foundational solutions of the linear variational equation of the unperturbed system along the heteroclinic orbits. We study the bifurcation problems of twisted heteroclinic loop with resonant eigenvalues. Under the twisted conditions and some transversal conditions, we obtain the existence, the number, the coexistence and non-coexistence problem of 1-heteroclinic loop, 1-homoclinic loop, 1-periodic orbit, double 1-periodic orbit, and 2-heteroclinic loop, 2-homoclinic loop, 2-periodic orbit. Moreover, the relative bifurcation surfaces and the existence regions are given, and the corresponding bifurcation graphs are drawn.
引用
收藏
页码:557 / 573
页数:17
相关论文
共 50 条
  • [1] Bifurcations of twisted heteroclinic loop with resonant eigenvalues
    Yinlai Jin
    Xiaowei Zhu
    Yuanyuan Liu
    Han Xu
    Nana Zhang
    [J]. Nonlinear Dynamics, 2018, 92 : 557 - 573
  • [2] Bifurcations of Nontwisted Heteroclinic Loop with Resonant Eigenvalues
    Jin, Yinlai
    Zhu, Xiaowei
    Guo, Zheng
    Xu, Han
    Zhang, Liqun
    Ding, Benyan
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [3] Bifurcations of Heteroclinic Loop with Twisted Conditions
    Jin, Yinlai
    Yang, Suoling
    Liu, Yuanyuan
    Xie, Dandan
    Zhang, Nana
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08):
  • [5] BIFURCATIONS OF TWISTED FINE HETEROCLINIC LOOP FOR HIGH-DIMENSIONAL SYSTEMS
    Jin, Yinlai
    Zhang, Dongmei
    Wang, Ningning
    Zhu, Deming
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2906 - 2921
  • [6] Homoclinic and heteroclinic bifurcations close to a twisted heteroclinic cycle
    Zimmermann, MG
    Natiello, MA
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (02): : 359 - 375
  • [7] Bifurcations of nontwisted heteroclinic loop
    田清平
    朱德明
    [J]. Science in China,SerA., 2000, Ser.A.2000 (08) : 818 - 828
  • [8] Bifurcations of nontwisted heteroclinic loop
    Tian, QP
    Zhu, DM
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (08): : 818 - 828
  • [9] Bifurcations of nontwisted heteroclinic loop
    Qingping Tian
    Deming Zhu
    [J]. Science in China Series A: Mathematics, 2000, 43 : 818 - 828
  • [10] Bifurcations of nontwisted heteroclinic loop
    田清平
    朱德明
    [J]. Science China Mathematics, 2000, (08) : 818 - 828