Injectivity of compressing maps on the set of primitive sequences modulo square-free odd integers

被引:2
|
作者
Hu, Zhi [1 ,2 ]
Wang, Lin [3 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[3] Sci & Technol Commun Secur Lab, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Stream cipher; Residue ring; Compressing map; Primitive sequence; Modular function; MAXIMAL LENGTH SEQUENCES; DISTINCTNESS; REDUCTIONS; MAPPINGS; RINGS;
D O I
10.1007/s12095-014-0121-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let p(1), p(2),..., p(r) be distinct odd primes and m = p(1)p(2)(...)p(r). Let f (x) be a primitive polynomial of degree n over Z/mZ. Denote by L(f) the set of primitive linear recurring sequences generated by f (x). A map psi on Z/mZ naturally induces a map (psi) over cap on L(f), mapping a sequence (...,s(i -1), s(i), s(i +1),...) to (...,psi(s(i-1)),psi(s(i)),psi(s(i +1)),...). Previous results gave sufficient conditions under which modular functions induce injective maps on L(f). In this article we give an inequality which holds for large enough n. If this inequality holds, then the injectivity of (psi) over cap is clearly determined for any map psi on Z/mZ. Particularly, the modular function psi(a) = a mod M induces an injective map on L(f) for any M is an element of {2 <= i is an element of Z : i inverted iota m}.
引用
收藏
页码:347 / 361
页数:15
相关论文
共 50 条
  • [1] Injectivity of compressing maps on the set of primitive sequences modulo square-free odd integers
    Zhi Hu
    Lin Wang
    [J]. Cryptography and Communications, 2015, 7 : 347 - 361
  • [2] On the distinctness of modular reductions of primitive sequences modulo square-free odd integers
    Zheng, Qunxiong
    Qi, Wenfeng
    Tian, Tian
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (22) : 872 - 875
  • [3] On the Distinctness of Binary Sequences Derived From Primitive Sequences Modulo Square-Free Odd Integers
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    Tian, Tian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) : 680 - 690
  • [4] Further Results on the Distinctness of Binary Sequences Derived From Primitive Sequences Modulo Square-Free Odd Integers
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) : 4013 - 4019
  • [5] A Tighter Bound for the Character Sum of Primitive Sequences over Residue Rings Modulo Square-Free Odd Integers
    Wang, Lin
    Zhou, Yu
    Gao, Ying
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (01): : 246 - 249
  • [6] Further result of compressing maps on primitive sequences modulo odd prime powers
    Zhu, Xuan-Yong
    Qi, Wen-Feng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (08) : 2985 - 2990
  • [7] Injectivity of compressing maps on primitive sequences over Z/(pe)
    Tian, Tian
    Qi, Wen-Feng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (08) : 2960 - 2966
  • [8] DISTRIBUTION OF SQUARE-FREE INTEGERS IN NONLINEAR SEQUENCES
    STUX, IE
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1975, 59 (02) : 577 - 584
  • [9] On the least square-free primitive root modulo p
    Cohen, Stephen D.
    Trudgian, Tim
    [J]. JOURNAL OF NUMBER THEORY, 2017, 170 : 10 - 16
  • [10] SQUARE-FREE INTEGERS
    CHOWLA, S
    SMITH, RA
    VAIDYA, AM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (06): : 686 - &