CONTINUOUS DEPENDENCE OF SOLUTIONS FOR INDEFINITE SEMILINEAR ELLIPTIC PROBLEMS

被引:0
|
作者
Silva, Elves A. B. [1 ]
Silva, Maxwell L. [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Goias, Inst Matemat & Estatist, BR-74001970 Goiania Go, Brazil
关键词
Positive solution; constrained minimization; eigenvalue problem; Neumann boundary condition; unique continuation; UNIQUE CONTINUATION; POSITIVE SOLUTIONS; EQUATIONS; NONLINEARITIES; EIGENVALUES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the superlinear elliptic problem -Delta u + m(x)u = a(x)u(p) in a bounded smooth domain under Neumann boundary conditions, where m is an element of L-sigma (Omega), sigma >= N/2 and a is an element of C ((Omega) over bar) is a sign changing function. Assuming that the associated first eigenvalue of the operator -Delta + m is zero, we use constrained minimization methods to study the existence of a positive solution when (m) over cap is a suitable perturbation of m.
引用
收藏
页数:17
相关论文
共 50 条