MeDIP-HMM: genome-wide identification of distinct DNA methylation states from high-density tiling arrays

被引:15
|
作者
Seifert, Michael [1 ,2 ,3 ]
Cortijo, Sandra [2 ]
Colome-Tatche, Maria [4 ]
Johannes, Frank [4 ]
Roudier, Francois [2 ]
Colot, Vincent [2 ]
机构
[1] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Mol Genet, Gatersleben, Germany
[2] Ecole Normale Super, CNRS, Inst Biol, UMR8197, Paris, France
[3] Tech Univ Dresden, Ctr Biotechnol, D-01062 Dresden, Germany
[4] Univ Groningen, Groningen Bioinformat Ctr, Groningen, Netherlands
关键词
CHIP-CHIP; MODEL; EXPRESSION; PROFILES;
D O I
10.1093/bioinformatics/bts562
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Methylation of cytosines in DNA is an important epigenetic mechanism involved in transcriptional regulation and preservation of genome integrity in a wide range of eukaryotes. Immunoprecipitation of methylated DNA followed by hybridization to genomic tiling arrays (MeDIP-chip) is a cost-effective and sensitive method for methylome analyses. However, existing bioinformatics methods only enable a binary classification into unmethylated and methylated genomic regions, which limit biological interpretations. Indeed, DNA methylation levels can vary substantially within a given DNA fragment depending on the number and degree of methylated cytosines. Therefore, a method for the identification of more than two methylation states is highly desirable. Results: Here, we present a three-state hidden Markov model (MeDIP-HMM) for analyzing MeDIP-chip data. MeDIP-HMM uses a higher-order state-transition process improving modeling of spatial dependencies between chromosomal regions, allows a simultaneous analysis of replicates and enables a differentiation between unmethylated, methylated and highly methylated genomic regions. We train MeDIP-HMM using a Bayesian Baum-Welch algorithm, integrating prior knowledge on methylation levels. We apply MeDIP-HMM to the analysis of the Arabidopsis root methylome and systematically investigate the benefit of using higher-order HMMs. Moreover, we also perform an in-depth comparison study with existing methods and demonstrate the value of using MeDIP-HMM by comparisons to current knowledge on the Arabidopsis methylome. We find that MeDIP-HMM is a fast and precise method for the analysis of methylome data, enabling the identification of distinct DNA methylation levels. Finally, we provide evidence for the general applicability of MeDIP-HMM by analyzing promoter DNA methylation data obtained for chicken.
引用
收藏
页码:2930 / 2939
页数:10
相关论文
共 50 条
  • [1] Genome-wide CpG density and DNA methylation analysis method (MeDIP, RRBS, and WGBS) comparisons
    Beck, Daniel
    Ben Maamar, Millissia
    Skinner, Michael K.
    EPIGENETICS, 2022, 17 (05) : 518 - 530
  • [2] Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays
    Mei, R
    Galipeau, PC
    Prass, C
    Berno, A
    Ghandour, G
    Patil, N
    Wolff, RK
    Chee, MS
    Reid, BJ
    Lockhart, DJ
    GENOME RESEARCH, 2000, 10 (08) : 1126 - 1137
  • [3] Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays
    Komura, Daisuke
    Shen, Fan
    Ishikawa, Shumpei
    Fitch, Karen R.
    Chen, Wenwei
    Zhang, Jane
    Liu, Guoying
    Ihara, Sigeo
    Nakamura, Hiroshi
    Hurles, Matthew E.
    Lee, Charles
    Scherer, Stephen W.
    Jones, Keith W.
    Shapero, Michael H.
    Huang, Jing
    Aburatani, Hiroyuki
    GENOME RESEARCH, 2006, 16 (12) : 1575 - 1584
  • [4] Genome-wide analysis of DNA copy number changes in meningiomas using FISH and high-density SNP arrays
    Maillo, Orfao Alberto
    Abel, Castrillo
    Pablo, Sousa
    Marta, Merino
    Ana, Espinosa
    Evan, Jensen
    Juana, Ciudad
    Maria Dolores, Tabernero
    CHROMOSOME RESEARCH, 2007, 15 : 212 - 212
  • [5] Genome-wide analysis of DNA copy number changes in multiple myeloma using high-density SNP arrays
    Mosca, L.
    Agnelli, L.
    Fabris, S.
    Ronchetti, D.
    Todoerti, K.
    Lionetti, M.
    Kwee, I
    Bicciato, S.
    Baldini, L.
    Morabito, F.
    Bertoni, F.
    Lambertenghi Deliliers, G.
    Neri, A.
    HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2007, 92 : 136 - 137
  • [6] Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays
    Pfeifer, Dietmar
    Pantic, Milena
    Skatulla, Ilona
    Rawluk, Justyna
    Kreutz, Clemens
    Martens, Uwe M.
    Fisch, Paul
    Timmer, Jens
    Veelken, Hendrik
    BLOOD, 2007, 109 (03) : 1202 - 1210
  • [7] Genome-wide analysis of DNA copy number changes in multiple myeloma using high-density SNP arrays
    Mosca, L.
    Agnelli, L.
    Ronchetti, D.
    Fabris, S.
    Todoerti, K.
    Bicciato, S.
    Baldini, L.
    Morabito, F.
    Lambertenghi-Deliliers, G.
    Neri, A.
    HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2007, 92 : 260 - 260
  • [8] A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus
    Carolina P Sansaloni
    César D Petroli
    Jason Carling
    Corey J Hudson
    Dorothy A Steane
    Alexander A Myburg
    Dario Grattapaglia
    René E Vaillancourt
    Andrzej Kilian
    Plant Methods, 6
  • [9] Genome-Wide Analysis of Neuroblastomas using High-Density Single Nucleotide Polymorphism Arrays
    George, Rani E.
    Attiyeh, Edward F.
    Li, Shuli
    Moreau, Lisa A.
    Neuberg, Donna
    Li, Cheng
    Fox, Edward A.
    Meyerson, Matthew
    Diller, Lisa
    Fortina, Paolo
    Look, A. Thomas
    Maris, John M.
    PLOS ONE, 2007, 2 (02):
  • [10] A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus
    Sansaloni, Carolina P.
    Petroli, Cesar D.
    Carling, Jason
    Hudson, Corey J.
    Steane, Dorothy A.
    Myburg, Alexander A.
    Grattapaglia, Dario
    Vaillancourt, Rene E.
    Kilian, Andrzej
    PLANT METHODS, 2010, 6