Stochastic exclusion processes versus coherent transport

被引:40
|
作者
Temme, Kristan [1 ]
Wolf, Michael M. [2 ]
Verstraete, Frank [1 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
奥地利科学基金会;
关键词
OPEN BOUNDARIES; SYSTEMS; MODEL;
D O I
10.1088/1367-2630/14/7/075004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stochastic exclusion processes play an integral role in the physics of non-equilibrium statistical mechanics. These models are Markovian processes, described by a classical master equation. In this paper, a quantum mechanical version of a stochastic hopping process in one dimension is formulated in terms of a quantum master equation. This allows the investigation of coherent and stochastic evolution in the same formal framework. The focus lies on the non-equilibrium steady state. Two stochastic model systems are considered: the totally asymmetric exclusion process and the fully symmetric exclusion process. The steady-state transport properties of these models are compared to the case with additional coherent evolution, generated by the X X Hamiltonian.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Stochastic exclusion processes with extended hopping
    Huang, DW
    PHYSICAL REVIEW E, 2001, 64 (03): : 7
  • [2] Generalized exclusion processes: Transport coefficients
    Arita, Chikashi
    Krapivsky, P. L.
    Mallick, Kirone
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [3] QUANTUM HEISENBERG FERROMAGNETS AND STOCHASTIC EXCLUSION PROCESSES
    THOMAS, LE
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (07) : 1921 - 1924
  • [4] Anomalous transport and stochastic processes
    Balescu, R
    FUSION TECHNOLOGY, 1996, 29 (2T): : 155 - 169
  • [5] Exclusion processes on networks as models for cytoskeletal transport
    Neri, Izaak
    Kern, Norbert
    Parmeggiani, Andrea
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [6] Comment on "Generalized exclusion processes: Transport coefficients"
    Becker, T.
    Nelissen, K.
    Cleuren, B.
    Partoens, B.
    Van den Broeck, C.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [7] Stochastic simulation of transport processes in liquids
    Rudyak, V. Ya
    Lezhnev, E., V
    XXXV SIBERIAN THERMOPHYSICAL SEMINAR, 2019, 2019, 1382
  • [8] Optimal Transport Construction of Stochastic Processes
    不详
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (04): : 40 - 41
  • [9] Lagrangian coherent structures and plasma transport processes
    Falessi, M. V.
    Pegoraro, F.
    Schep, T. J.
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [10] Deformed coherent state solution to multiparticle stochastic processes
    Aneva, B
    Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 131 - 141