GPU-Based Memory Optimization Method for Multiple Sequence Alignment

被引:0
|
作者
Jin, Lizhong [1 ]
机构
[1] Northeast Dianli Univ, Sch Chem Engn, Changchun 130012, Jilin, Peoples R China
关键词
Multiple Sequence Alignment; GPU; Memory Optimization; ClustalW; CLUSTALW; HARDWARE; PARALLEL;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we present a few memory optimization strategies to accelerate the ClustalW program based on GPUs. The non-coalesced global memory accesses, the global memory accesses and the control expenses are eliminated or reduced by using global memory optimization, the share memory optimization and by loop unrolling strategies respectively. This results in a high-speed implementation with more than 12x speedup on a commodity graphics card over the optimized ClustalW program on the Intel Quad Q9400 platform.
引用
收藏
页码:36 / 39
页数:4
相关论文
共 10 条
  • [1] Multiple sequence alignment in parallel on a workstation cluster
    Ebedes, J
    Datta, A
    [J]. BIOINFORMATICS, 2004, 20 (07) : 1193 - 1195
  • [2] ClustalW-MPI: ClustalW analysis using distributed and parallel computing
    Li, KB
    [J]. BIOINFORMATICS, 2003, 19 (12) : 1585 - 1586
  • [3] Ligowski L., 2010, P ACM SIGPLAN S PRIN, P137
  • [4] Liu WG, 2006, LECT NOTES COMPUT SC, V4297, P363
  • [5] CUDASW++: Optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units
    Liu Y.
    Maskell D.L.
    Schmidt B.
    [J]. BMC Research Notes, 2 (1)
  • [6] CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment
    Manavski, Svetlin A.
    Valle, Giorgio
    [J]. BMC BIOINFORMATICS, 2008, 9 (Suppl 2)
  • [7] Mikhailov D., 2001, WHITE PAPERS SILICON
  • [8] *NVIDIA CORP, CUDA PROGR GUID VERS
  • [9] Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW
    Oliver, T
    Schmidt, B
    Nathan, D
    Clemens, R
    Maskell, D
    [J]. BIOINFORMATICS, 2005, 21 (16) : 3431 - 3432
  • [10] Wang Yifei, 2006, BIOINFORMATICS