Sparse Identification for Nonlinear Optical Communication Systems

被引:0
|
作者
Sorokina, Mariia [1 ]
Sygletos, Stylianos [1 ]
Turitsyn, Sergei [1 ]
机构
[1] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧盟第七框架计划;
关键词
nonlinear analysis; machine learning; fiber optic communications; spatial division multiplexing; COMPENSATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a low complexity machine learning based nonlinear impairment equalization scheme and demonstrated its successful performance in SDM transmission links achieving compensation of both inter- and intra- channel Kerr-based nonlinear effects. The method operates in one sample per symbol and in one computational step. It is adaptive, i.e. it does not require a knowledge of system parameters, and it is scalable to different power levels and modulation formats. The method can be straightforwardly expanded to multi-channel systems and to any other type of nonlinear impairment.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Sparse identification for nonlinear optical communication systems: SINO method
    Sorokina, Mariia
    Sygletos, Stylianos
    Turitsyn, Sergei
    [J]. OPTICS EXPRESS, 2016, 24 (26): : 30433 - 30443
  • [2] Attack Identification for Nonlinear Systems Based on Sparse Optimization
    Braun, Sarah
    Albrecht, Sebastian
    Lucia, Sergio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) : 6397 - 6412
  • [3] A New Sparse Kernel RLS Algorithm for Identification of Nonlinear Systems
    Guo, Xinyu
    Ou, Shifeng
    Jiang, Menghua
    Gao, Ying
    Xu, Jindong
    Cai, Zhuoran
    [J]. IEEE ACCESS, 2021, 9 : 163165 - 163177
  • [4] Basis Identification for Nonlinear Dynamical Systems Using Sparse Coding
    Deshmukh, Rohit
    Liang, Zongxian
    McNamara, Jack J.
    [J]. NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 279 - 293
  • [5] A Bayesian transfer sparse identification method for nonlinear ARX systems
    Zhang, Kang
    Luan, Xiaoli
    Ding, Feng
    Liu, Fei
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024, : 3484 - 3502
  • [6] Nonlinear Compensation Technologies for Future Optical Communication Systems
    Oyama, Tomofumi
    Hoshida, Takeshi
    Nakashima, Hisao
    Oda, Shoichiro
    Yamauchi, Tomohiro
    Tanimura, Takahito
    Dou, Liang
    Zhao, Ying
    Tao, Zhenning
    Rasmussen, Jens C.
    [J]. NEXT-GENERATION OPTICAL COMMUNICATION: COMPONENTS, SUB-SYSTEMS, AND SYSTEMS IV, 2015, 9389
  • [7] Nonlinear crosstalk and compensation in QDPASK optical communication systems
    Hansryd, J
    van Howe, J
    Xu, C
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (08) : 1975 - 1977
  • [8] Genetic algorithm based identification of nonlinear systems by sparse Volterra filters
    Yao, L
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) : 3433 - 3435
  • [9] A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems
    Pan, Wei
    Yuan, Ye
    Goncalves, Jorge
    Stan, Guy-Bart
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) : 182 - 187
  • [10] Genetic algorithm based identification of nonlinear systems by sparse Volterra filters
    Yao, LT
    [J]. ETFA '96 - 1996 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, VOLS 1 AND 2, 1996, : 327 - 333