Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

被引:0
|
作者
Gregersen, Niels [1 ]
Lermer, Matthias [2 ]
Reitzenstein, Stephan [2 ]
Hoefling, Sven [2 ]
Mork, Jesper [1 ]
Worschech, Lukas [2 ]
Kamp, Martin [2 ]
Forchel, Alfred [2 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DTU Foton, Bldg 343, DK-2800 Lyngby, Denmark
[2] Univ Wurzburg, Wilhelm Conard Rontgen Res Ctr Complex Mat Syst, Tech Phys, D-97074 Wurzburg, Germany
关键词
Micropillar; adiabatic transition; Bloch-wave engineering; strong coupling; cavity quantum electrodynamics; tapering; PHOTONIC CRYSTAL; QUALITY FACTOR; PILLAR MICROCAVITIES; NANOCAVITY; SYSTEM; VOLUME;
D O I
10.1117/12.2004137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/root V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 mu eV and a Q of 13600 for a 850 nm diameter micropillar.
引用
收藏
页数:7
相关论文
共 13 条
  • [1] Bloch-Wave Engineering of Quantum Dot Micropillars for Cavity Quantum Electrodynamics Experiments
    Lermer, M.
    Gregersen, N.
    Dunzer, F.
    Reitzenstein, S.
    Hoefling, S.
    Mork, J.
    Worschech, L.
    Kamp, M.
    Forchel, A.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (05)
  • [2] Bloch-Wave Engineered Submicron Diameter Micropillars with Quality Factors Exceeding 10,000
    Hoefling, S.
    Lermer, M.
    Gregersen, N.
    Dunzer, F.
    Schneider, C.
    Reitzenstein, S.
    Kamp, M.
    Mork, J.
    Worschech, L.
    Forchel, A.
    [J]. 2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 69 - +
  • [3] Quantum-dot spins and cavity QED
    Atatuere, Mete
    [J]. 2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 186 - 186
  • [4] Quantum-dot Mollow triplet in a semiconductor cavity-QED system
    Roy, C.
    Hughes, S.
    [J]. NANOPHOTONICS IV, 2012, 8424
  • [5] Tunable single quantum dot nanocavities for cavity QED experiments
    Kaniber, M.
    Laucht, A.
    Neumann, A.
    Bichler, M.
    Amann, M-C
    Finley, J. J.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (45)
  • [6] Optimal universal and phase-covariant quantum cloning machines with quantum-dot spins in cavity QED
    Zhu, Aidong
    Yeon, Kyu-Hwang
    Yu, Seong-Cho
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (23)
  • [7] Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system
    Roy, C.
    Hughes, S.
    [J]. PHYSICAL REVIEW B, 2012, 85 (11)
  • [8] Non-Markovian delay in the formation of coherence in quantum-dot nanolasers operating in the cavity-QED regime
    Segnon, Mawussey
    Moody, Galan
    Jahnke, Frank
    Stevens, Martin
    Gies, Christopher
    [J]. 17TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES NUSOD 2017, 2017, : 235 - 236
  • [9] Extended polarized semiclassical model for quantum-dot cavity QED and its application to single-photon sources
    Snijders, H. J.
    Kok, D. N. L.
    van de Stolpe, M. F.
    Frey, J. A.
    Norman, J.
    Gossard, A. C.
    Bowers, J. E.
    van Exter, M. P.
    Bouwmeester, D.
    Loeffler, W.
    [J]. PHYSICAL REVIEW A, 2020, 101 (05)
  • [10] Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers
    Cartar, William
    Mork, Jesper
    Hughes, Stephen
    [J]. PHYSICAL REVIEW A, 2017, 96 (02)