Differential principal component analysis of ChIP-seq

被引:34
|
作者
Ji, Hongkai [1 ]
Li, Xia [2 ,3 ]
Wang, Qian-fei [2 ]
Ning, Yang [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[2] Chinese Acad Sci, Beijing Inst Genom, CAS Key Lab Genome Sci & Informat, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
美国国家卫生研究院;
关键词
allele-specific binding; differential binding; histone modification; next-generation sequencing; RNA-seq; ALLELE-SPECIFIC EXPRESSION; JOINT ANALYSIS; BINDING; SITES; MODEL;
D O I
10.1073/pnas.1204398110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose differential principal component analysis (dPCA) for analyzing multiple ChIP-sequencing datasets to identify differential protein-DNA interactions between two biological conditions. dPCA integrates unsupervised pattern discovery, dimension reduction, and statistical inference into a single framework. It uses a small number of principal components to summarize concisely the major multiprotein synergistic differential patterns between the two conditions. For each pattern, it detects and prioritizes differential genomic loci by comparing the between-condition differences with the within-condition variation among replicate samples. dPCA provides a unique tool for efficiently analyzing large amounts of ChIP-sequencing data to study dynamic changes of gene regulation across different biological conditions. We demonstrate this approach through analyses of differential chromatin patterns at transcription factor binding sites and promoters as well as allele-specific protein-DNA interactions.
引用
收藏
页码:6789 / 6794
页数:6
相关论文
共 50 条
  • [1] Differential principal component analysis of ChIP-seq (vol 110, pg 6789, 2013)
    Ji, Hongkai
    Li, Xia
    Wang, Qian-Fei
    Ning, Yang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (29) : 12156 - 12156
  • [2] A comprehensive comparison of tools for differential ChIP-seq analysis
    Steinhauser, Sebastian
    Kurzawa, Nils
    Eils, Roland
    Herrmann, Carl
    [J]. BRIEFINGS IN BIOINFORMATICS, 2016, 17 (06) : 953 - 966
  • [3] Analysis of Controls in ChIP-seq
    Awdeh, Aseel
    Perkins, Theodore J.
    [J]. ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 620 - 620
  • [4] THE ANALYSIS OF CHIP-SEQ DATA
    Ma, Wenxiu
    Wong, Wing Hung
    [J]. METHODS IN ENZYMOLOGY, VOL 497: SYNTHETIC BIOLOGY, METHODS FOR PART/DEVICE CHARACTERIZATION AND CHASSIS ENGINEERING, PT A, 2011, 497 : 51 - 73
  • [5] Differential motif enrichment analysis of paired ChIP-seq experiments
    Tom Lesluyes
    James Johnson
    Philip Machanick
    Timothy L Bailey
    [J]. BMC Genomics, 15
  • [6] Differential motif enrichment analysis of paired ChIP-seq experiments
    Lesluyes, Tom
    Johnson, James
    Machanick, Philip
    Bailey, Timothy L.
    [J]. BMC GENOMICS, 2014, 15
  • [7] ChIPseqR: analysis of ChIP-seq experiments
    Peter Humburg
    Chris A Helliwell
    David Bulger
    Glenn Stone
    [J]. BMC Bioinformatics, 12
  • [8] Genomic Location Analysis by ChIP-Seq
    Barski, Artem
    Zhao, Keji
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2009, 107 (01) : 11 - 18
  • [9] De novo ChIP-seq analysis
    Xin He
    A. Ercument Cicek
    Yuhao Wang
    Marcel H. Schulz
    Hai-Son Le
    Ziv Bar-Joseph
    [J]. Genome Biology, 16
  • [10] De novo ChIP-seq analysis
    He, Xin
    Cicek, A. Ercument
    Wang, Yuhao
    Schulz, Marcel H.
    Le, Hai-Son
    Bar-Joseph, Ziv
    [J]. GENOME BIOLOGY, 2015, 16