Spin-1/2 Heisenberg antiferromagnet on an anisotropic kagome lattice

被引:27
|
作者
Li, P. H. Y. [1 ]
Bishop, R. F. [1 ]
Campbell, C. E. [2 ]
Farnell, D. J. J. [3 ]
Goetze, O. [4 ]
Richter, J. [4 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[3] Univ Glamorgan, Div Math & Stat, Fac Adv Technol, Pontypridd CF37 1DL, M Glam, Wales
[4] Univ Magdeburg, Inst Theoret Phys, D-39016 Magdeburg, Germany
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 21期
关键词
COUPLED-CLUSTER METHOD; METHOD CCM CALCULATIONS; GROUND-STATE; TRIANGULAR-LATTICE; QUANTUM MAGNETS; PHASE-TRANSITIONS; ORDER; DISORDER; MODEL; EXCITATIONS;
D O I
10.1103/PhysRevB.86.214403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use the coupled-cluster method to study the zero-temperature properties of an extended two-dimensional Heisenberg antiferromagnet formed from spin-1/2 moments on an infinite spatially anisotropic kagome lattice of corner-sharing isosceles triangles, with nearest-neighbor bonds only. The bonds have exchange constants J(1) > 0 along two of the three lattice directions and J(2) = kappa J(1) > 0 along the third. In the classical limit, the ground-state (GS) phase for kappa < 1/2 has collinear ferrimagnetic (Neel') order where the J(2)-coupled chain spins are ferromagnetically ordered in one direction with the remaining spins aligned in the opposite direction, while for kappa > 1/2 there exists an infinite GS family of canted ferrimagnetic spin states, which are energetically degenerate. For the spin-1/2 case, we find that quantum analogs of both these classical states continue to exist as stable GS phases in some regions of the anisotropy parameter kappa, namely, for 0 < kappa < kappa(c1) for the Neel' state and for (at least part of) the region kappa > kappa(c2) for the canted phase. However, they are now separated by a paramagnetic phase without either sort of magnetic order in the region kappa(c1) < kappa < kappa(c2), which includes the isotropic kagome point kappa = 1 where the stable GS phase is now believed to be a topological (Z(2)) spin liquid. Our best numerical estimates are kappa(c1) = 0.515 +/- 0.015 and kappa(c2) = 1.82 +/- 0.03.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ground state of the spin-1/2 kagome-lattice Heisenberg antiferromagnet
    Singh, Rajiv R. P.
    Huse, David A.
    [J]. PHYSICAL REVIEW B, 2007, 76 (18)
  • [2] Chemistry of the spin-1/2 kagome Heisenberg antiferromagnet
    Yao, Yuan
    Umrigar, C. J.
    Elser, Veit
    [J]. PHYSICAL REVIEW B, 2020, 102 (01)
  • [3] Trimerized ground state of the spin-1 Heisenberg antiferromagnet on the kagome lattice
    Changlani, Hitesh J.
    Laeuchli, Andreas M.
    [J]. PHYSICAL REVIEW B, 2015, 91 (10):
  • [4] Spin-1/2 Heisenberg J1-J2 antiferromagnet on the kagome lattice
    Iqbal, Yasir
    Poilblanc, Didier
    Becca, Federico
    [J]. PHYSICAL REVIEW B, 2015, 91 (02)
  • [5] The spin-1 anisotropic Heisenberg antiferromagnet on a square lattice at low temperatures
    Pires, A. S. T.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (15) : 1977 - 1979
  • [6] Spin-1/2 Heisenberg antiferromagnet on the kagome lattice: Z2 spin liquid with fermionic spinons
    Hao, Zhihao
    Tchernyshyov, Oleg
    [J]. PHYSICAL REVIEW B, 2013, 87 (21)
  • [7] Spin-1/2 kagome Heisenberg antiferromagnet with strong breathing anisotropy
    Jahromi, Saeed S.
    Orus, Roman
    Poilblanc, Didier
    Mila, Frederic
    [J]. SCIPOST PHYSICS, 2020, 9 (06):
  • [8] First excitations of the spin 1/2 Heisenberg antiferromagnet on the kagome lattice
    Waldtmann, C
    Everts, HU
    Bernu, B
    Lhuillier, C
    Sindzingre, P
    Lecheminant, P
    Pierre, L
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1998, 2 (04): : 501 - 507
  • [9] Magnetization of the spin-1/2 Heisenberg antiferromagnet on the triangular lattice
    Li, Qian
    Li, Hong
    Zhao, Jize
    Luo, Hong-Gang
    Xie, Z. Y.
    [J]. PHYSICAL REVIEW B, 2022, 105 (18)
  • [10] Gapless spin-liquid phase in the kagome spin-1/2 Heisenberg antiferromagnet
    Iqbal, Yasir
    Becca, Federico
    Sorella, Sandro
    Poilblanc, Didier
    [J]. PHYSICAL REVIEW B, 2013, 87 (06):