Positivity conjecture for Jack polynomials

被引:0
|
作者
Lassalle, Michel [1 ]
机构
[1] Univ Marne la Vallee, Ctr Natl Rech Sci, Inst Gaspard Monge, F-77454 Marne La Vallee, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a positivity conjecture for the coefficients of the development of Jack polynomials in terms of power sums. This extends Stanley's ex-conjecture about normalized characters of the symmetric group. We prove this conjecture for partitions having a rectangular shape.
引用
收藏
页码:661 / 681
页数:21
相关论文
共 50 条
  • [1] Generalized Jack and Macdonald polynomials arising from AGT conjecture
    Ohkubo, Y.
    [J]. XXIV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-24), 2017, 804
  • [2] Strong factorization property of Macdonald polynomials and higher-order Macdonald’s positivity conjecture
    Maciej Dołęga
    [J]. Journal of Algebraic Combinatorics, 2017, 46 : 135 - 163
  • [3] Strong factorization property of Macdonald polynomials and higher-order Macdonald's positivity conjecture
    Dolega, Maciej
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (01) : 135 - 163
  • [4] Positivity of Narayana polynomials and Eulerian polynomials
    Ma, Shi-Mei
    Qi, Hao
    Yeh, Jean
    Yeh, Yeong-Nan
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2024, 154
  • [5] Jack Polynomials in Superspace
    Patrick Desrosiers
    Luc Lapointe
    Pierre Mathieu
    [J]. Communications in Mathematical Physics, 2003, 242 : 331 - 360
  • [6] Jack polynomials in superspace
    Desrosiers, P
    Lapointe, L
    Mathieu, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (1-2) : 331 - 360
  • [7] An Identity of Jack Polynomials
    Diaz-Garcia, Jose A.
    Gutierrez-Jaimez, Ramon
    [J]. JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2012, 11 (01): : 87 - 92
  • [8] On the positivity and convexity of polynomials
    Zheng, JJ
    Chen, XQ
    Zhang, JJ
    [J]. CAD/GRAPHICS '2001: PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, VOLS 1 AND 2, 2001, : 82 - 88
  • [9] POSITIVITY CONDITIONS FOR POLYNOMIALS
    DEANGELIS, V
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 : 23 - 51
  • [10] Positivity of trigonometric polynomials
    Megretski, A
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 3814 - 3817