An Affect-Based Video Retrieval System with Open Vocabulary Querying

被引:0
|
作者
Chan, Ching Hau [1 ]
Jones, Gareth J. F. [1 ]
机构
[1] Dublin City Univ, Sch Comp, Ctr Digital Video Proc, Dublin 9, Ireland
关键词
affective computing; information retrieval; multimedia data; open vocabulary querying; automatic annotation; CONTEXT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Content-based video retrieval systems (CBVR.) are creating new search and browse capabilities using metadata describing significant features of the data. An often overlooked aspect of human interpretation of multimedia data is the affective dimension. Incorporating affective information into multimedia. metadata can potentially enable search using this alternative interpretation of multimedia content. Recent work has described methods to automatically assign affective labels to multimedia data using various approaches. However, the subjective and imprecise nature of affective labels makes it difficult to bridge the semantic gap between system-detected labels and user expression of information requirements in multimedia retrieval. We present a novel affect-based video retrieval system incorporating an open-vocabulary query stage based on Word Net enabling search using an unrestricted query vocabulary. The system performs automatic annotation of video data with labels of well defined affective terms. In retrieval annotated documents are ranked using the standard Okapi retrieval model based on open-vocabulary text queries. We present experimental results examining the behaviour of the system for retrieval of a collection of automatically annotated feature films of different genres. Our results indicate that affective annotation can potentially provide useful augmentation to more traditional objective content description in multimedia retrieval.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 50 条
  • [1] An Affect-Based Multimodal Video Recommendation System
    Kaklauskas, Arturas
    Gudauskas, Renaldas
    Kozlovas, Matas
    Peciure, Lina
    Lepkova, Natalija
    Cerkauskas, Justas
    Banaitis, Audrius
    [J]. STUDIES IN INFORMATICS AND CONTROL, 2016, 25 (01): : 5 - 14
  • [2] Affivir: An affect-based Internet video recommendation system
    Niu, Jianwei
    Zhao, Xiaoke
    Zhu, Like
    Li, Haiying
    [J]. NEUROCOMPUTING, 2013, 120 : 422 - 433
  • [3] QUERIES AND TAGS IN AFFECT-BASED MULTIMEDIA RETRIEVAL
    Kierkels, Joep J. M.
    Soleymani, Mohammad
    Pun, Thieriy
    [J]. ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1436 - 1439
  • [4] An Affect-Based Built Environment Video Analytics
    Kaklauskas, A.
    Zavadskas, E. K.
    Bardauskiene, D.
    Cerkauskas, J.
    Ubarte, I.
    Seniut, M.
    Dzemyda, G.
    Kaklauskaite, M.
    Vinogradova, I.
    Velykorusova, A.
    [J]. AUTOMATION IN CONSTRUCTION, 2019, 106
  • [5] Panorama: A Data System for Unbounded Vocabulary Querying over Video
    Zhang, Yuhao
    Kumar, Arun
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 13 (04): : 477 - 491
  • [6] Image and video databases: Visual browsing, querying and retrieval
    DelBimbo, A
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 1996, 7 (04): : 353 - 359
  • [7] An Information Retrieval System with Weighted Querying Based on Linguistic Information
    Wang, Songxin
    Huang, Hailiang
    [J]. THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA AND UBIQUITOUS ENGINEERING (MUE 2009), 2009, : 14 - 17
  • [8] Making Interpretation Visible With an Affect-Based Strategy
    Levine, Sarah
    [J]. READING RESEARCH QUARTERLY, 2014, 49 (03) : 283 - 303
  • [9] Stylistic Features for Affect-Based Movie Recommendations
    Tarvainen, Jussi
    Westman, Stina
    Oittinen, Pirkko
    [J]. HUMAN BEHAVIOR UNDERSTANDING (HBU 2013), 2013, 8212 : 52 - 63
  • [10] Image Battle System: Collecting more trustable ground truth for Affect-based image indexing system
    Akhmedjanov, Umid
    Ko, Eunjeong
    Kim, Eun Yi
    [J]. 9TH INTERNATIONAL CONFERENCE ON COGNITIVE SCIENCE, 2013, 97 : 571 - 579