Nuclear transition matrix elements for neutrinoless double-β decay within mechanisms involving light Majorana neutrino mass and right-handed current

被引:0
|
作者
Singh, Yash Kaur [1 ]
Chandra, R. [1 ]
Chaturvedi, K. [2 ]
Avasthi, Tripti [3 ]
Rath, P. K. [3 ]
Raina, P. K. [4 ]
机构
[1] Babasaheb Bhimrao Ambedkar Univ, Dept Phys, Lucknow 226025, Uttar Pradesh, India
[2] Bundelkhand Univ, Dept Phys, Jhansi 284128, Uttar Pradesh, India
[3] Univ Lucknow, Dept Phys, Lucknow 226007, Uttar Pradesh, India
[4] Indian Inst Technol Ropar, Dept Phys, Rupnagar 140001, Punjab, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS E | 2019年 / 28卷 / 1-2期
关键词
Neutrinoless double beta decay; right-handed current; nuclear transition matrix elements;
D O I
10.1142/S0218301319500010
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Employing the projected-Hartree-Fock-Bogoliubov (PHFB) model in conjunction with four different parametrizations of pairing plus multipolar effective two-body interaction and three different parametrizations of Jastrow short-range correlations, nuclear transition matrix elements for the neutrinoless double-beta decay of Zr-94,Zr-96, Mo-100, (110)pd, Te-128,Te-130 and Nd-150 isotopes are calculated within mechanisms involving light Majorana neutrino mass and right-handed current. Statistically, model specific uncertainties in sets of twelve nuclear transition matrix elements are estimated by calculating the averages along with the standard deviations. For the considered nuclei, the most stringent extracted on-axis limits on the effective light Majorana neutrino mass < m(nu)>, the effective weak coupling of right-handed leptonic current with right-handed hadronic current <lambda >, and the effective weak coupling of right-handed leptonic current with left-handed hadronic current <eta > from the observed limit on half-life T-1/2(0 nu) of Te-130 isotope are 0.33 eV, 4.57 x 10(-7) and 4.72 x 10(-9), respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Neutrinoless Double-β Decay and Nuclear Transition Matrix Elements
    Rath, P. K.
    WORKSHOP ON CALCULATION OF DOUBLE-BETA-DECAY MATRIX ELEMENTS (MEDEX15), 2015, 1686
  • [2] Structure of nuclear transition matrix elements for neutrinoless double-β decay
    P. K. Rath
    Pramana, 2010, 75 : 281 - 291
  • [3] Structure of nuclear transition matrix elements for neutrinoless double-β decay
    Rath, P. K.
    PRAMANA-JOURNAL OF PHYSICS, 2010, 75 (02): : 281 - 291
  • [4] Uncertainties in nuclear transition matrix elements for neutrinoless ββ decay: The heavy Majorana neutrino mass mechanism
    Rath, P. K.
    Chandra, R.
    Raina, P. K.
    Chaturvedi, K.
    Hirsch, J. G.
    PHYSICAL REVIEW C, 2012, 85 (01):
  • [5] Majorana neutrino masses, neutrinoless double beta decay, and nuclear matrix elements
    Bilenky, SM
    Faessler, A
    Simkovic, F
    PHYSICAL REVIEW D, 2004, 70 (03):
  • [6] Nuclear transition matrix elements for neutrinoless double-β decay within Rp-violating squark-neutrino mechanism
    Rath, P. K.
    Shukla, B.
    Chaturvedi, K.
    Nautiyal, V. K.
    Chandra, R.
    Raina, P. K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2020, 29 (08):
  • [7] Neutrinoless ββ decay transition matrix elements within mechanisms involving light Majorana neutrinos, classical Majorons, and sterile neutrinos
    Rath, P. K.
    Chandra, R.
    Chaturvedi, K.
    Lohani, P.
    Raina, P. K.
    Hirsch, J. G.
    PHYSICAL REVIEW C, 2013, 88 (06):
  • [8] Hybrid textures of the right-handed Majorana neutrino mass matrix
    Dev, S.
    Gautam, Radha Raman
    Singh, Lal
    PHYSICAL REVIEW D, 2013, 88 (03):
  • [9] Nuclear transition matrix elements for neutrinoless double-β decay of 76Ge within mechanisms involving sterile neutrinos, Majorons and composite neutrinos
    Rath, P. K.
    Kumar, A.
    Gautam, R.
    Chandra, R.
    Raina, P. K.
    Dixit, B. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2021, 30 (01):
  • [10] Neutrinoless double-β decay matrix elements in light nuclei
    Pastore, S.
    Carlson, J.
    Cirigliano, V.
    Dekens, W.
    Mereghetti, E.
    Wiringa, R. B.
    PHYSICAL REVIEW C, 2018, 97 (01)