Gradient estimates for a simple nonlinear heat equation on manifolds

被引:3
|
作者
Ma, Li [1 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Positive solution; nonlinear heat equation; gradient estimate; 53C21; 35J60; RIEMANNIAN-MANIFOLDS; PARABOLIC EQUATION; RICCI FLOW;
D O I
10.1080/00036811.2015.1120290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the gradient estimate for positive solutions to the following nonlinear heat equation problem u(t) - Delta u = au log u + Vu, u > 0 on the compact Riemannian manifold (M, g) of dimension n and with non-negative Ricci curvature. Here a <= 0 is a constant, V is a smooth function on M with -Delta V <= A for some positive constant A. This heat equation is a basic evolution equation and it can be considered as the negative gradient heat flow to W-functional (introduced by G.Perelman), which is the Log-Sobolev inequalities on the Riemannian manifold and V corresponds to the scalar curvature.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [1] Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds
    Guangyue Huang
    Bingqing Ma
    [J]. Archiv der Mathematik, 2010, 94 : 265 - 275
  • [2] Gradient estimates for a nonlinear diffusion equation on complete manifolds
    Jiaxian Wu
    Qihua Ruan
    Yihu Yang
    [J]. Chinese Annals of Mathematics, Series B, 2015, 36 : 1011 - 1018
  • [3] Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds
    Yang, Yunyan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) : 4095 - 4102
  • [4] Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds
    Huang, Guangyue
    Ma, Bingqing
    [J]. ARCHIV DER MATHEMATIK, 2010, 94 (03) : 265 - 275
  • [5] Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds
    Wu, Jiaxian
    Ruan, Qihua
    Yang, Yihu
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (06) : 1011 - 1018
  • [6] Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds
    Jiaxian WU
    Qihua RUAN
    Yihu YANG
    [J]. Chinese Annals of Mathematics,Series B, 2015, 36 (06) : 1011 - 1018
  • [7] Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds
    Wu Jiayong
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (01): : 68 - 79
  • [8] SHARP GRADIENT ESTIMATES FOR A HEAT EQUATION IN RIEMANNIAN MANIFOLDS
    Ha Tuan Dung
    Nguyen Thac Dung
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) : 5329 - 5338
  • [9] GRADIENT ESTIMATES FOR A NONLINEAR ELLIPTIC EQUATION ON COMPLETE RIEMANNIAN MANIFOLDS
    Ma, Bingqing
    Huang, Guangyue
    Luo, Yong
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) : 4993 - 5002
  • [10] Gradient estimates for a weighted nonlinear equation on complete noncompact manifolds
    Li, Jing
    He, Guoqing
    Zhao, Peibiao
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (3-4): : 377 - 392