Error analysis of a finite element method for the Willmore flow of graphs

被引:0
|
作者
Deckelnick, K
Dziuk, G
机构
[1] Univ Magdeburg, Inst Anal & Numer, D-39106 Magdeburg, Germany
[2] Univ Freiburg, Inst Angew Math, D-79104 Freiburg, Germany
关键词
Willmore flow; fourth order parabolic problem; finite element; mixed method; error estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evolution of two-dimensional graphs under Willmore flow is approximated by a continuous-in-time finite element method. The highly nonlinear fourth order problem is split into two coupled second order problems using height and a weighted mean curvature as variables. We prove a-priori error estimates for the resulting time-continuous scheme and present results of test calculations.
引用
收藏
页码:21 / 46
页数:26
相关论文
共 50 条
  • [1] A C1-FINITE ELEMENT METHOD FOR THE WILLMORE FLOW OF TWO-DIMENSIONAL GRAPHS
    Deckelnick, Klaus
    Katz, Jakob
    Schieweck, Friedhelm
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 2617 - 2643
  • [2] Finite difference scheme for the Willmore flow of graphs
    Oberhuber, Tomas
    KYBERNETIKA, 2007, 43 (06) : 855 - 867
  • [3] AN ENERGY-STABLE PARAMETRIC FINITE ELEMENT METHOD FOR THE PLANAR WILLMORE FLOW
    Bao, Weizhu
    Li, Yifei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2025, 63 (01) : 103 - 121
  • [4] OPTIMAL ERROR ESTIMATES OF THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR WILLMORE FLOW OF GRAPHS ON CARTESIAN MESHES
    Ji, Liangyue
    Xu, Yan
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (02) : 252 - 283
  • [5] A posteriori error analysis of an augmented mixed finite element method for Darcy flow
    Barrios, Tomas P.
    Manuel Cascon, J.
    Gonzalez, Maria
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 909 - 922
  • [6] Error analysis for the approximation of axisymmetric Willmore flow by C1-finite elements
    Deckelnick, Klaus
    Schieweck, Friedhelm
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (04) : 551 - 574
  • [7] A convergent evolving finite element algorithm for Willmore flow of closed surfaces
    Kovacs, Balazs
    Li, Buyang
    Lubich, Christian
    NUMERISCHE MATHEMATIK, 2021, 149 (03) : 595 - 643
  • [8] A convergent evolving finite element algorithm for Willmore flow of closed surfaces
    Balázs Kovács
    Buyang Li
    Christian Lubich
    Numerische Mathematik, 2021, 149 : 595 - 643
  • [9] A finite element error analysis for axisymmetric mean curvature flow
    Barrett, John W.
    Deckelnick, Klaus
    Nurnberg, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 1641 - 1667
  • [10] Local Discontinuous Galerkin Method for Surface Diffusion and Willmore Flow of Graphs
    Yan Xu
    Chi-Wang Shu
    Journal of Scientific Computing, 2009, 40 : 375 - 390