Direct-flow channel reactor with supercritical coolant pressure

被引:1
|
作者
Gabaraev, BA
Vikulov, VK
Ermoshin, FE
Mityaev, YI
Nikolotov, AM
Rozhdestvenskii, MI
Romenkov, AA
Fedik, II
Gavrilin, SS
Deniskin, VP
Nalivaev, VI
机构
[1] N. A. Dollezhal’ Scientific-Research and Design Institute of Power Engineering,
[2] Luch Scientific and Industrial Association,undefined
关键词
Fuel Element; Technological Scheme; Reactor Design; Strength Calculation; Supercritical Pressure;
D O I
10.1007/s10512-005-0200-z
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The concept of a direct-flow channel reactor with supercritical-pressure water (CR-SCP) is presented. Neutron-physics, thermohydraulic, and strength calculations are used to substantiate the fundamental core design with a heavy-metal moderator which at supercritical pressure is competitive with other modern reactor designs with respect to fuel-cycle indicators. Two types of fuel-element and fuel-channel structures are examined. It is shown that fuel elements based on micropellets and a metal matrix are highly reliable and have higher operating characteristics (burnup, service lift, geometric stability. and so on) than fuel elements with uranium-dioxide fuel. A CR-SCP design and the technological scheme of a power-generating unit are presented, and the systems which are required to ensure normal operation and safety are determined. The main technical-economic indicators of a power-generating unit with installed electric power 850 MW are estimated.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 50 条
  • [1] Direct-Flow Channel Reactor with Supercritical Coolant Pressure
    B. A. Gabaraev
    V. K. Vikulov
    F. E. Ermoshin
    Yu. I. Mityaev
    A. M. Nikolotov
    M. I. Rozhdestvenskii
    A. A. Romenkov
    I. I. Fedik
    S. S. Gavrilin
    V. P. Deniskin
    V. I. Nalivaev
    [J]. Atomic Energy, 2005, 98 : 233 - 241
  • [2] Prospects for the development of a direct-flow vessel reactor with superheated steam
    Filippov, G. A.
    Grishanin, E. I.
    Fal'kovskii, L. N.
    Fonarev, B. I.
    Alekseev, P. N.
    Kukharkin, N. E.
    Fomichenko, P. A.
    Tsibul'skii, V. F.
    Chibinyaev, A. V.
    [J]. ATOMIC ENERGY, 2006, 100 (03) : 192 - 198
  • [3] Continuous synthesis of polyacrylates with interphase polycondensation in direct-flow reactor
    Nikiforov, VA
    Pankratov, EA
    Markova, VA
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 1995, 38 (03): : 112 - 117
  • [4] Prospects for the development of a direct-flow vessel reactor with superheated steam
    G. A. Filippov
    E. I. Grishanin
    L. N. Fal’kovskii
    B. I. Fonarev
    P. N. Alekseev
    N. E. Kukharkin
    P. A. Fomichenko
    V. F. Tsibul’skii
    A. V. Chibinyaev
    [J]. Atomic Energy, 2006, 100 : 192 - 198
  • [5] Methanol Production Based on Direct-Flow Gas Generator and Nuclear Reactor
    Shcheklein, S. E.
    Dubinin, A. M.
    [J]. ATOMIC ENERGY, 2018, 124 (02) : 91 - 97
  • [6] Model Studies of Coolant Flow Hydrodynamics in VVER-1000 In-Reactor Pressure Channel
    Krapivtsev, V. G.
    [J]. ATOMIC ENERGY, 2017, 122 (05) : 304 - 310
  • [7] Model Studies of Coolant Flow Hydrodynamics in VVER-1000 In-Reactor Pressure Channel
    V. G. Krapivtsev
    [J]. Atomic Energy, 2017, 122 : 304 - 310
  • [8] High-efficient separator for direct-flow reactor of catalytic cracking
    VNII NP
    [J]. Zhizao Jishu Yu Jichuang, 11 (28-30):
  • [9] Methanol Production Based on Direct-Flow Gas Generator and Nuclear Reactor
    S. E. Shcheklein
    A. M. Dubinin
    [J]. Atomic Energy, 2018, 124 : 91 - 97
  • [10] HYDRODYNAMICS OF DIRECT-FLOW GAS-LIQUID REACTOR SECTIONED BY VALVE TRAYS
    ZADORSKY, VM
    SOLODOVNIKOV, VV
    EGORKIN, VD
    CHERNYSHOVA, TP
    [J]. KHIMICHESKAYA PROMYSHLENNOST, 1980, (05): : 296 - 298