Phenanthrenequinone-Based Linear Polymers as Sustainable Cathode Materials for Rechargeable Li-Ion Batteries

被引:4
|
作者
Guo, Xinya [1 ]
Zhang, Ying [1 ]
Chen, Han [1 ]
Cui, Chaohui [2 ]
Li, Zhenyao [1 ]
Du, Ya [2 ]
Wang, Baofeng [1 ]
Yang, Haishen [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Environm & Chem Engn, Shanghai Key Lab Mat Protect & Adv Mat Elect Powe, Shanghai 200090, Peoples R China
[2] Nanjing Tech Univ, Sch Chem & Mol Engn, Inst Adv Synth, Nanjing 211816, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Coal Tar; Linear Conjugated Polymer; Lithium Ion Batteries; Organic Cathode Material; ORGANIC ELECTRODES; PERFORMANCE; COMPOSITES; COMPOUND;
D O I
10.20964/2020.08.75
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Coal tar is a useful industrial by-product, which is produced in large quantities every year, but has not been adequately utilized thus far. Herein, we design and synthesize two novel coaltar-derived organic linear polymers, namely, poly(2-ethynylphenanthrene-9,10-dione) (PEPQ) and poly(2-(thiophen-2-yl)phenanthrene-9,10-dione) (PTPQ). Beyond as traditional anode materials from coal tar, PEPQ and PTPQ were studied as lithium (Li)-ion battery (LIB) cathode materials in this study. The obtained PEPQ and PTPQ exhibited reversible specific capacities of up to 125 and 138 mAh g(-1), respectively, at 10 mA g(-1), in LIBs. In particular, the comparative study on the electrochemical performance of these two polymers revealed that replacing the ethynylene linkage (in PEPQ) with thiophene linkage (in PTPQ) endowed the material with faster redox kinetics, a greater electronic conductivity, and thus a higher active site utilization (75% vs. 54%). This discovery in this work could provide elementary insights into the rational construction of organic cathode materials for LIBs with a superior performance.
引用
收藏
页码:7774 / 7787
页数:14
相关论文
共 50 条
  • [1] Two Phenanthrenequinone-Based Compound Cathode Materials for Lithium Ion Batteries
    Tao, Wuqi
    Zhang, Huicong
    Jia, Tao
    Luo, Suilian
    Hou, Qiong
    Wang, Yuhai
    Shi, Guang
    Xu, Bingjia
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) : A1574 - A1577
  • [2] Multicomponent Silicate Cathode Materials for Rechargeable Li-Ion Batteries: An Ab Initio Study
    Longo, R. C.
    Xiong, K.
    Cho, K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (01) : A60 - A65
  • [3] Controlled crystallization of spherical active cathode materials for NiMH and Li-ion rechargeable batteries
    Pu, WH
    He, XM
    Li, JJ
    Ying, JR
    Jiang, CY
    Wan, CR
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2005, 8 (03) : 235 - 241
  • [4] A Review on Nanocomposite Materials for Rechargeable Li-ion Batteries
    Demirocak, Dervis Emre
    Srinivasan, Sesha S.
    Stefanakos, Elias K.
    APPLIED SCIENCES-BASEL, 2017, 7 (07):
  • [5] Nanostructured Materials for Advanced Li-Ion Rechargeable Batteries
    Wang, Ying
    Cao, Guozhong
    IEEE NANOTECHNOLOGY MAGAZINE, 2009, 3 (02) : 14 - 20
  • [6] Rechargeable Li-Ion Batteries, Nanocomposite Materials and Applications
    El Afia, Sara
    Cano, Antonio
    Arévalo, Paul
    Jurado, Francisco
    Batteries, 2024, 10 (12)
  • [7] Origin of extra capacity in advanced Li-Rich cathode materials for rechargeable Li-Ion batteries
    Redel, Katarzyna
    Kulka, Andrzej
    Walczak, Katarzyna
    Plewa, Anna
    Hanc, Emil
    Marzec, Mateusz
    Lu, Li
    Molenda, Janina
    CHEMICAL ENGINEERING JOURNAL, 2021, 424
  • [8] Structure and electrochemical characteristics of LiFePO4 cathode materials for rechargeable Li-Ion batteries
    Kamzin, A. S.
    Bobyl', A. V.
    Ershenko, E. M.
    Terukov, E. I.
    Agafonov, D. V.
    Kudryavtsev, E. N.
    PHYSICS OF THE SOLID STATE, 2013, 55 (07) : 1385 - 1394
  • [9] Crystal structure and multicomponent effects in Tetrahedral Silicate Cathode Materials for Rechargeable Li-ion Batteries
    Longo, R. C.
    Xiong, K.
    Santosh, K. C.
    Cho, K.
    ELECTROCHIMICA ACTA, 2014, 121 : 434 - 442
  • [10] Structure and electrochemical characteristics of LiFePO4 cathode materials for rechargeable Li-Ion batteries
    A. S. Kamzin
    A. V. Bobyl’
    E. M. Ershenko
    E. I. Terukov
    D. V. Agafonov
    E. N. Kudryavtsev
    Physics of the Solid State, 2013, 55 : 1385 - 1394