Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering

被引:56
|
作者
Jin, Yashi [1 ]
Kundu, Banani [2 ,3 ,4 ]
Cai, Yurong [1 ]
Kundu, Subhas C. [2 ]
Yao, Juming [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Mat & Text, Minist Educ, Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Peoples R China
[2] Indian Inst Technol, Dept Biotechnol, Kharagpur 721302, W Bengal, India
[3] Dankook Univ, Inst Tissue Regenerat Engn ITREN, Ctr Regenerat Med, Cheonan 330714, South Korea
[4] Dankook Univ, Dept Nanobiomed Sci Plus NBM Global Res BK21, Ctr Regenerat Med, Cheonan 330714, South Korea
基金
中国国家自然科学基金;
关键词
Silk fibroin; Hydrogel; Crystal growth; Hydroxyapatite; Biomaterials; Bone tissue engineering; CALCIUM-CARBONATE CRYSTALS; POROUS SCAFFOLDS; NUCLEATION; GROWTH; FABRICATION; CELLS; MODEL;
D O I
10.1016/j.colsurfb.2015.07.015
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
To fabricate hard tissue implants with bone-like structure using a biomimetic mineralization method is drawing much more attentions in bone tissue engineering. The present work focuses in designing 3D silk fibroin hydrogel to modulate the nucleation and growth of hydroxyapatite crystals via a simple ion diffusion method. The study indicates that Ca2+ incorporation within the hydrogel provides the nucleation sites for hydroxyapatite crystals and subsequently regulates their oriented growth. The mineralization process is regulated in a Ca2+ concentration-and minerlization time-dependent way. Further, the compressive strength of the mineralized hydrogels is directly proportional with the mineral content in hydrogel. The orchestrated organic/inorganic composite supports well the viability and proliferation of human osteoblast cells; improved cyto-compatibility with increased mineral content. Together, the present investigation reports a simple and biomimetic process to fabricate 3D bone-like biomaterial with desired efficacy to repair bone defects. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:339 / 345
页数:7
相关论文
共 50 条
  • [1] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Zhenyu Xu
    Ke Li
    Kui Zhou
    Shuiyuan Li
    Hongwei Chen
    Jiaqi Zeng
    Rugang Hu
    [J]. Fibers and Polymers, 2023, 24 : 275 - 283
  • [2] A Bio-inspired Multifunctionalized Silk Fibroin
    Santi, Sofia
    Mancini, Ines
    Dire, Sandra
    Callone, Emanuela
    Speranza, Giorgio
    Pugno, Nicola
    Migliaresi, Claudio
    Motta, Antonella
    [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (02) : 507 - 516
  • [3] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Xu, Zhenyu
    Li, Ke
    Zhou, Kui
    Li, Shuiyuan
    Chen, Hongwei
    Zeng, Jiaqi
    Hu, Rugang
    [J]. FIBERS AND POLYMERS, 2023, 24 (01) : 275 - 283
  • [4] Silk fibroin/hydroxyapatite composites for bone tissue engineering
    Farokhi, Mehdi
    Mottaghitalab, Fatemeh
    Samani, Saeed
    Shokrgozar, Mohammad Ali
    Kundu, Subhas C.
    Reis, Rui L.
    Fatahi, Yousef
    Kaplan, David L.
    [J]. BIOTECHNOLOGY ADVANCES, 2018, 36 (01) : 68 - 91
  • [5] Bio-inspired 3D microenvironments: a new dimension in tissue engineering
    Magin, Chelsea M.
    Alge, Daniel L.
    Anseth, Kristi S.
    [J]. BIOMEDICAL MATERIALS, 2016, 11 (02)
  • [6] Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering
    Hong, Heesun
    Seo, Ye Been
    Kim, Do Yeon
    Lee, Ji Seung
    Lee, Young Jin
    Lee, Hanna
    Ajiteru, Olatunji
    Sultan, Md Tipu
    Lee, Ok Joo
    Kim, Soon Hee
    Park, Chan Hum
    [J]. BIOMATERIALS, 2020, 232 (232)
  • [7] Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering
    Dhand, Chetna
    Ong, Seow Theng
    Dwivedi, Neeraj
    Diaz, Silvia Marrero
    Venugopal, Jayarama Reddy
    Navaneethan, Balchandar
    Fazil, Mobashar H. U. T.
    Liu, Shouping
    Seitz, Vera
    Wintermantel, Erich
    Beuerman, Roger W.
    Ramakrishna, Seeram
    Verma, Navin K.
    Lakshminarayanan, Rajamani
    [J]. BIOMATERIALS, 2016, 104 : 323 - 338
  • [8] Silk fibroin/hydroxyapatite composite hydrogel induced by gamma-ray irradiation for bone tissue engineering
    Kim M.H.
    Kim B.S.
    Lee J.
    Cho D.
    Kwon O.H.
    Park W.H.
    [J]. Biomaterials Research, 21 (1)
  • [9] 3D bioprinted silk fibroin hydrogels for tissue engineering
    Kim, Soon Hee
    Hong, Heesun
    Ajiteru, Olatunji
    Sultan, Md Tipu
    Lee, Young Jin
    Lee, Ji Seung
    Lee, Ok Joo
    Lee, Hanna
    Park, Hae Sang
    Choi, Kyu Young
    Lee, Joong Seob
    Ju, Hyung Woo
    Hong, In-Sun
    Park, Chan Hum
    [J]. NATURE PROTOCOLS, 2021, 16 (12) : 5484 - 5532
  • [10] 3D bioprinted silk fibroin hydrogels for tissue engineering
    Soon Hee Kim
    Heesun Hong
    Olatunji Ajiteru
    Md. Tipu Sultan
    Young Jin Lee
    Ji Seung Lee
    Ok Joo Lee
    Hanna Lee
    Hae Sang Park
    Kyu Young Choi
    Joong Seob Lee
    Hyung Woo Ju
    In-Sun Hong
    Chan Hum Park
    [J]. Nature Protocols, 2021, 16 : 5484 - 5532