Development of a Deep-Learning-Based Artificial Intelligence Tool for Differential Diagnosis between Dry and Neovascular Age-Related Macular Degeneration

被引:18
|
作者
Heo, Tae-Young [1 ]
Kim, Kyoung Min [1 ]
Min, Hyun Kyu [2 ,3 ]
Gu, Sun Mi [2 ,3 ]
Kim, Jae Hyun [4 ]
Yun, Jaesuk [2 ,3 ]
Min, Jung Kee [2 ,3 ,4 ]
机构
[1] Chungbuk Natl Univ, Dept Informat & Stat, Chungdae Ro 1, Cheongju 28644, Chungbuk, South Korea
[2] Chungbuk Natl Univ, Coll Pharm, 194-31 Osongsaengmyeong 1 Ro, Cheongju 28160, Chungbuk, South Korea
[3] Chungbuk Natl Univ, Med Res Ctr, 194-31 Osongsaengmyeong 1 Ro, Cheongju 28160, Chungbuk, South Korea
[4] Univ Ulsan, Ulsan Univ Hosp, Coll Med, Dept Ophthalmol, 877 Bangeojinsunhwando Ro, Ulsan 44033, South Korea
基金
新加坡国家研究基金会;
关键词
age-related macular degeneration; class activation map; convolutional neural network; cross-validation; retina;
D O I
10.3390/diagnostics10050261
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The use of deep-learning-based artificial intelligence (AI) is emerging in ophthalmology, with AI-mediated differential diagnosis of neovascular age-related macular degeneration (AMD) and dry AMD a promising methodology for precise treatment strategies and prognosis. Here, we developed deep learning algorithms and predicted diseases using 399 images of fundus. Based on feature extraction and classification with fully connected layers, we applied the Visual Geometry Group with 16 layers (VGG16) model of convolutional neural networks to classify new images. Image-data augmentation in our model was performed using Keras ImageDataGenerator, and the leave-one-out procedure was used for model cross-validation. The prediction and validation results obtained using the AI AMD diagnosis model showed relevant performance and suitability as well as better diagnostic accuracy than manual review by first-year residents. These results suggest the efficacy of this tool for early differential diagnosis of AMD in situations involving shortages of ophthalmology specialists and other medical devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Differential diagnosis of neovascular age-related macular degeneration
    Engelbert, Michael
    [J]. SPEKTRUM DER AUGENHEILKUNDE, 2018, 32 (01) : 12 - 17
  • [2] Deep Learning in Neovascular Age-Related Macular Degeneration
    Borrelli, Enrico
    Serafino, Sonia
    Ricardi, Federico
    Coletto, Andrea
    Neri, Giovanni
    Olivieri, Chiara
    Ulla, Lorena
    Foti, Claudio
    Marolo, Paola
    Toro, Mario Damiano
    Bandello, Francesco
    Reibaldi, Michele
    [J]. MEDICINA-LITHUANIA, 2024, 60 (06):
  • [3] Artificial intelligence-based predictions in neovascular age-related macular degeneration
    Ferrara, Daniela
    Newton, Elizabeth M.
    Lee, Aaron Y.
    [J]. CURRENT OPINION IN OPHTHALMOLOGY, 2021, 32 (05) : 389 - 396
  • [4] Deep-learning-based prediction of late age-related macular degeneration progression
    Qi Yan
    Daniel E. Weeks
    Hongyi Xin
    Anand Swaroop
    Emily Y. Chew
    Heng Huang
    Ying Ding
    Wei Chen
    [J]. Nature Machine Intelligence, 2020, 2 : 141 - 150
  • [5] Deep-learning-based prediction of late age-related macular degeneration progression
    Yan, Qi
    Weeks, Daniel E.
    Xin, Hongyi
    Swaroop, Anand
    Chew, Emily Y.
    Huang, Heng
    Ding, Ying
    Chen, Wei
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (02) : 141 - +
  • [6] Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration
    von der Emde, Leon
    Pfau, Maximilian
    Dysli, Chantal
    Thiele, Sarah
    Moeller, Philipp T.
    Lindner, Moritz
    Schmid, Matthias
    Fleckenstein, Monika
    Holz, Frank G.
    Schmitz-Valckenberg, Steffen
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1) : 11132
  • [7] Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration
    Leon von der Emde
    Maximilian Pfau
    Chantal Dysli
    Sarah Thiele
    Philipp T. Möller
    Moritz Lindner
    Matthias Schmid
    Monika Fleckenstein
    Frank G. Holz
    Steffen Schmitz-Valckenberg
    [J]. Scientific Reports, 9
  • [8] Macular atrophy development in neovascular age-related macular degeneration
    Calugaru, Dan
    Calugaru, Mihai
    [J]. EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2022, 32 (01) : NP307 - NP308
  • [9] Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning
    Moraes, Gabriella
    Fu, Dun Jack
    Wilson, Marc
    Khalid, Hagar
    Wagner, Siegfried K.
    Korot, Edward
    Ferraz, Daniel
    Faes, Livia
    Kelly, Christopher J.
    Spitz, Terry
    Patel, Praveen J.
    Balaskas, Konstantinos
    Keenan, Tiarnan D. L.
    Keane, Pearse A.
    Chopra, Reena
    [J]. OPHTHALMOLOGY, 2021, 128 (05) : 693 - 705
  • [10] Artificial Intelligence Machine Learning of Optical Coherence Tomography Angiography for the Diagnosis of Age-related Macular degeneration
    Lin, Tai-Chi
    Jheng, Ying-Chun
    Chen, Shih-Jen
    Chiou, Shih-Hwa
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)