A multitask multiple kernel learning formulation for discriminating early- and late-stage cancers

被引:7
|
作者
Rahimi, Arezou [1 ]
Gonen, Mehmet [2 ,3 ,4 ]
机构
[1] Koc Univ, Grad Sch Sci & Engn, TR-34450 Istanbul, Turkey
[2] Koc Univ, Coll Engn, Dept Ind Engn, TR-34450 Istanbul, Turkey
[3] Koc Univ, Sch Med, TR-34450 Istanbul, Turkey
[4] Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, Portland, OR 97239 USA
关键词
THYROID-CANCER; BREAST-CANCER; CARCINOMA; ASSOCIATION; ESOPHAGEAL; SIGNATURES;
D O I
10.1093/bioinformatics/btaa168
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Genomic information is increasingly being used in diagnosis, prognosis and treatment of cancer. The severity of the disease is usually measured by the tumor stage. Therefore, identifying pathways playing an important role in progression of the disease stage is of great interest. Given that there are similarities in the underlying mechanisms of different cancers, in addition to the considerable correlation in the genomic data, there is a need for machine learning methods that can take these aspects of genomic data into account. Furthermore, using machine learning for studying multiple cancer cohorts together with a collection of molecular pathways creates an opportunity for knowledge extraction. Results: We studied the problem of discriminating early- and late-stage tumors of several cancers using genomic information while enforcing interpretability on the solutions. To this end, we developed a multitask multiple kernel learning (MTMKL) method with a co-clustering step based on a cutting-plane algorithm to identify the relationships between the input tasks and kernels. We tested our algorithm on 15 cancer cohorts and observed that, in most cases, MTMKL outperforms other algorithms (including random forests, support vector machine and single-task multiple kernel learning) in terms of predictive power. Using the aggregate results from multiple replications, we also derived similarity matrices between cancer cohorts, which are, in many cases, in agreement with available relationships reported in the relevant literature.
引用
收藏
页码:3766 / 3772
页数:7
相关论文
共 50 条
  • [1] Discriminating early- and late-stage cancers using multiple kernel learning on gene sets
    Rahimi, Arezou
    Gonen, Mehmet
    BIOINFORMATICS, 2018, 34 (13) : 412 - 421
  • [2] Detection and localization of early- and late-stage cancers using platelet RNA
    In't Veld, Sjors G. J. G.
    Arkani, Mohammad
    Post, Edward
    Antunes-Ferreira, Mafalda
    D'Ambrosi, Silvia
    Vessies, Daan C. L.
    Vermunt, Lisa
    Vancura, Adrienne
    Muller, Mirte
    Niemeijer, Anna-Larissa N.
    Tannous, Jihane
    Meijer, Laura L.
    Le Large, Tessa Y. S.
    Mantini, Giulia
    Wondergem, Niels E.
    Heinhuis, Kimberley M.
    van Wilpe, Sandra
    Smits, A. Josien
    Drees, Esther E. E.
    Roos, Eva
    Leurs, Cyra E.
    Fat, Lee-Ann Tjon Kon
    van der Lelij, Ewoud J.
    Dwarshuis, Govert
    Kamphuis, Maarten J.
    Visser, Lisanne E.
    Harting, Romee
    Gregory, Annemijn
    Schweiger, Markus W.
    Wedekind, Laurine E.
    Ramaker, Jip
    Zwaan, Kenn
    Verschueren, Heleen
    Bahce, Idris
    De langen, Adrianus J.
    Smit, Egbert F.
    Van den Heuvel, Michel M.
    Hartemink, Koen J.
    Kuijpers, Marijke J. E.
    Egbrink, Mirjam G. A. Oude
    Griffioen, Arjan W.
    Rossel, Rafael
    Hiltermann, T. Jeroen N.
    Lee-Lewandrowski, Elizabeth
    Lewandrowski, Kent B.
    Hamer, Philip C. De Witt
    Kouwenhoven, Mathilde
    Reijneveld, Jaap C.
    Leenders, William P. J.
    Hoeben, Ann
    CANCER CELL, 2022, 40 (09) : 999 - +
  • [3] Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers
    McCulloch, Michael
    Jezierski, Tadeusz
    Broffman, Michael
    Hubbard, Alan
    Turner, Kirk
    Janecki, Teresa
    INTEGRATIVE CANCER THERAPIES, 2006, 5 (01) : 30 - 39
  • [4] Gene Expression-Based Supervised Classification Models for Discriminating Early- and Late-Stage Prostate Cancer
    Kumar R.
    Bhanti P.
    Marwal A.
    Gaur R.K.
    Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2020, 90 (3) : 541 - 565
  • [5] Journey from early- to late-stage development at Merck
    Dunn, Jamie McCabe
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [6] EARLY- AND LATE-STAGE OSTEOARTHRITIS PATIENTS EXHIBIT AN AUTONOMIC DYSFUNCTION
    Sohn, Rebecca
    Assar, Tina
    Kaufhold, Isabelle
    Brenneis, Marco
    Braun, Sebastian
    Junker, Marius
    Zaucke, Frank
    Pongratz, Georg
    Jenei-Lanzl, Zsuzsa
    OSTEOARTHRITIS AND CARTILAGE, 2024, 32 : S61 - S61
  • [7] Genetic analysis of early- versus late-stage ovarian tumors
    Shridhar, V
    Lee, J
    Pandita, A
    Iturria, S
    Avula, R
    Staub, J
    Morrissey, M
    Calhoun, E
    Sen, A
    Kalli, K
    Keeney, G
    Roche, P
    Cliby, W
    Lu, K
    Schmandt, R
    Mills, GB
    Bast, RC
    James, CD
    Couch, FJ
    Hartmann, LC
    Lillie, J
    Smith, DI
    CANCER RESEARCH, 2001, 61 (15) : 5895 - 5904
  • [8] Arthritis Pain: Moving Between Early- and Late-Stage Disease
    Walsh, David A.
    ARTHRITIS & RHEUMATOLOGY, 2017, 69 (07) : 1343 - 1345
  • [9] Anxiety level of early- and late-stage prostate cancer patients
    Johanes, Charles
    Monoarfa, Richard Arie
    Ismail, Raden Irawati
    Umbas, Rainy
    PROSTATE INTERNATIONAL, 2013, 1 (04) : 177 - 182
  • [10] An early- and late-stage convolution model for disease natural history
    Pinsky, PF
    BIOMETRICS, 2004, 60 (01) : 191 - 198