Concept-based Document Models using Explicit Semantic Analysis

被引:0
|
作者
Luo, Jing [1 ,2 ]
Meng, Bo [1 ]
Tu, Xinhui [2 ]
Liu, Maofu [2 ]
机构
[1] Wuhan Univ, Sch Comp, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
document model; explicit semantic analysis; language model;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
explicit semantic analysis (ESA) is a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedia. Several different ESA-based retrieval models have been proposed. However, these approaches depended on the performance of pseudo relevance feedback. In this paper, we propose a concept-based retrieval model under the language modeling framework. By means of concept mapping using explicit semantic analysis, the original documents are translated into conceptual representations, which are subsequently used to update the document models. The concept-based document model is evaluated on the TREC Ad Hoc Track (Disks 1, 2, and 3) collections. Experiment results show significant improvements with respect to the baseline models.
引用
收藏
页码:338 / 342
页数:5
相关论文
共 50 条
  • [1] Concept-based question analysis for an efficient document ranking
    Shin, Seung-Eun
    Ahn, Young-Min
    Seo, Young-Hoon
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 1202 - +
  • [2] Semantic Representation Using Explicit Concept Space Models
    Shalaby, Walid
    Zadrozny, Wlodek
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4983 - 4984
  • [3] Concept-Based Document Classification Using Wikipedia and Value Function
    Malo, Pekka
    Sinha, Ankur
    Wallenius, Jyrki
    Korhonen, Pekka
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2011, 62 (12): : 2496 - 2511
  • [4] Using WordNet for Concept-Based Document Indexing in Information Retrieval
    Boubekeur, Fatiha
    Boughanem, Mohand
    Tamine, Lynda
    Daoud, Mariam
    [J]. SEMAPRO 2010: THE FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN SEMANTIC PROCESSING, 2010, : 151 - 157
  • [5] Concept-based indexing of annotated images using semantic DNA
    Fadzli, Syed Abdullah
    Setchi, Rossitza
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (08) : 1644 - 1655
  • [6] Interactive Method for Semantic Document Indexing Based on Explicit Semantic Analysis
    Swieboda, Wojciech
    Krasuski, Adam
    Hung Son Nguyen
    Janusz, Andrzej
    [J]. FUNDAMENTA INFORMATICAE, 2014, 132 (03) : 423 - 438
  • [7] Concept-based document recommendations for CiteSeer authors
    Chandrasekaran, Karman
    Gauch, Susan
    Lakkaraju, Praveen
    Luong, Hiep Phuc
    [J]. ADAPTIVE HYPERMEDIA AND ADAPTIVE WEB-BASED SYSTEMS, 2008, 5149 : 83 - +
  • [8] Learning a concept-based document similarity measure
    Huang, Lan
    Milne, David
    Frank, Eibe
    Witten, Ian H.
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2012, 63 (08): : 1593 - 1608
  • [9] Concept-based image retrieval using the new semantic similarity measurement
    Choi, JH
    Cho, MY
    Park, SH
    Kim, P
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 79 - 88
  • [10] CONDOCS: A concept-based document categorization system using concept-probability vector with thesaurus
    Kang, HK
    Lee, JO
    Jeon, HS
    Ko, MC
    Kim, DH
    Oh, RD
    Kang, W
    [J]. ARTIFICIAL INTELLIGENCE AND SIMULATION, 2004, 3397 : 683 - 691