Handwritten text line segmentation using Fully Convolutional Network

被引:34
|
作者
Renton, Guillaume [1 ]
Chatelain, Clement [1 ]
Adam, Sebastien [1 ]
Kermorvant, Christopher [1 ,2 ]
Paquet, Thierry [1 ]
机构
[1] Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen,LITIS, F-76000 Rouen, France
[2] TEKLIA SAS, Paris, France
关键词
Fully Convolutional Networks; line segmentation; Dilated Convolutions; Document Layout Analysis;
D O I
10.1109/ICDAR.2017.321
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a learning based method for handwritten text line segmentation in document images. The originality of our approach rely on i) the use of X-height labeling of the textline, which provides a suitable text line representation for text recognition, and ii) a variant of deep Fully Convolutional Network (FCN) based on dilated convolutions. Results are given on a public dataset and compare favorably to a standard handmade segmentation approach.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条
  • [1] Text line segmentation using a fully convolutional network in handwritten document images
    Quang Nhat Vo
    Kim, Soo Hyung
    Yang, Hyung Jeong
    Lee, Guee Sang
    [J]. IET IMAGE PROCESSING, 2018, 12 (03) : 438 - 446
  • [2] Fully convolutional network with dilated convolutions for handwritten text line segmentation
    Guillaume Renton
    Yann Soullard
    Clément Chatelain
    Sébastien Adam
    Christopher Kermorvant
    Thierry Paquet
    [J]. International Journal on Document Analysis and Recognition (IJDAR), 2018, 21 : 177 - 186
  • [3] Fully convolutional network with dilated convolutions for handwritten text line segmentation
    Renton, Guillaume
    Soullard, Yann
    Chatelain, Clement
    Adam, Sebastien
    Kermorvant, Christopher
    Paquet, Thierry
    [J]. INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2018, 21 (03) : 177 - 186
  • [4] Text Line Segmentation for Challenging Handwritten Document Images Using Fully Convolutional Network
    Barakat, Berat
    Droby, Ahmad
    Kassis, Majeed
    El-Sana, Jihad
    [J]. PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2018, : 374 - 379
  • [5] Fully Convolutional Recurrent Network for Handwritten Chinese Text Recognition
    Xie, Zecheng
    Sun, Zenghui
    Jin, Lianwen
    Feng, Ziyong
    Zhang, Shuye
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 4011 - 4016
  • [6] Recurrence-free unconstrained handwritten text recognition using gated fully convolutional network
    Coquenet, Denis
    Chatelain, Clement
    Paquet, Thierry
    [J]. 2020 17TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR 2020), 2020, : 19 - 24
  • [7] Page Segmentation for Historical Handwritten Documents Using Fully Convolutional Networks
    Xu, Yue
    He, Wenhao
    Yin, Fei
    Liu, Cheng-Lin
    [J]. 2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 541 - 546
  • [8] Text line segmentation in handwritten document using a production system
    Nicolas, S
    Paquet, T
    Heutte, L
    [J]. NINTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION, PROCEEDINGS, 2004, : 245 - 250
  • [9] LINE SEGMENTATION OF HANDWRITTEN TEXT USING HISTOGRAMS AND TENSOR VOTING
    Babczynski, Tomasz
    Ptak, Roman
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2020, 30 (03) : 585 - 596
  • [10] Influence of Text Line Segmentation in Handwritten Text Recognition
    Romero, Veronica
    Andreu Sanchez, Joan
    Bosch, Vicente
    Depuydt, Katrien
    de Does, Jesse
    [J]. 2015 13TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2015, : 536 - 540