Preparation and Photocatalytic Properties of γ-Bi2O3/TiO2 Composite Fibers

被引:13
|
作者
Li Yue-Jun [1 ,2 ]
Cao Tie-Ping [2 ]
Shao Chang-Lu [1 ]
Wang Chang-Hua [1 ]
机构
[1] NE Normal Univ, Ctr Adv Optoelect Funct Mat Res, Changchun 130024, Peoples R China
[2] Baicheng Normal Coll, Dept Chem, Baicheng 137000, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospinning; solvothermal method; gamma-Bi2O3/TiO2 composite fibers; photocatalytic degradation; TIO2; FABRICATION; BI2O3;
D O I
10.3724/SP.J.1077.2012.11490
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterostructured gamma-Bi2O3/TiO2 composite fibers were prepared via combination of solvothermal method and electrospinning technique. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscope (EDS), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) and UV-Vis absorption spectra were used to characterize heterostructured gamma-Bi2O3/TiO2 composite fibers. The photocatalytic properties of the heterostructured samples were evaluated by degrading rhodamine B (RB) under visible light irradiation. The results showed that gamma-Bi2O3 nanosheets could evenly grow on the TiO2 fibers surface and thus heterostructured gamma-Bi2O3/TiO2 composite fibers were successfully obtained. The absorption range of the as-obtained heterostructured samples were extended to the visible light region. Moreover, the presence of gamma-Bi2O3 nanostructures/TiO2 fibers heterostructures was beneficial to separation of photo-generated electrons and holes which enhanced the system's quantum efficiency. In comparison with that of pure TiO2 nanofibers, the gamma-Bi2O3/TiO2 heterostructures have enhanced photocatalytic efficiency under visible light irradiation, and the decolorizing efficiency of RB solution can reach 87.8%.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 25 条
  • [1] [Anonymous], 2009, CHINESE J INORG CHEM, V25, P1971
  • [2] Photocatalytic activity of CU2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions
    Bessekhouad, Y
    Robert, D
    Weber, JV
    [J]. CATALYSIS TODAY, 2005, 101 (3-4) : 315 - 321
  • [3] Self-assembly of BixTi1-xO2 visible photocatalyst with core-shell structure and enhanced activity
    Bian, Zhenfeng
    Ren, Jie
    Zhu, Jian
    Wang, Shaohua
    Lu, Yunfeng
    Li, Hexing
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 89 (3-4) : 577 - 582
  • [4] Bi2O3 as a selective sensing material for NO detection
    Cabot, A
    Marsal, A
    Arbiol, J
    Morante, JR
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2004, 99 (01): : 74 - 89
  • [5] Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures
    Cao, Tieping
    Li, Yuejun
    Wang, Changhua
    Wei, Liming
    Shao, Changlu
    Liu, Yichun
    [J]. MATERIALS RESEARCH BULLETIN, 2010, 45 (10) : 1406 - 1412
  • [6] Preparation and characterization of bifunctional ZnO/ZnS nanoribbons decorated by γ-Fe2O3 clusters
    Cao, Xuebo
    Lan, Xianmei
    Guo, Yang
    Zhao, Cui
    Han, Shumin
    Wang, Jian
    Zhao, Qingrui
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (51): : 18958 - 18964
  • [7] Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications
    Chen, Xiaobo
    Mao, Samuel S.
    [J]. CHEMICAL REVIEWS, 2007, 107 (07) : 2891 - 2959
  • [8] Semiconductor-based Photocatalytic Hydrogen Generation
    Chen, Xiaobo
    Shen, Shaohua
    Guo, Liejin
    Mao, Samuel S.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6503 - 6570
  • [9] The preparation and crystal structure of a unique bismuth complex with ethylene glycol: The tris[ethane-1,2-diolato(2-)]dibismuth(III) polymer hydrate
    Cloutt, BA
    Sagatys, DS
    Smith, G
    Bott, RC
    [J]. AUSTRALIAN JOURNAL OF CHEMISTRY, 1997, 50 (09) : 947 - 950
  • [10] Structures and oxide mobility in Bi-Ln-O materials:: Heritage of Bi2O3
    Drache, Michel
    Roussel, Pascal
    Wignacourt, Jean-Pierre
    [J]. CHEMICAL REVIEWS, 2007, 107 (01) : 80 - 96