Integrated position estimation using aerial image sequences

被引:71
|
作者
Sim, DG
Park, RH
Kim, RC
Lee, SU
Kim, IC
机构
[1] Sogang Univ, Dept Elect Engn, Seoul 100661, South Korea
[2] Univ Seoul, Sch Elect & Comp Engn, Tongdaemoon Ku, Seoul 130743, South Korea
[3] Univ Seoul, Sch Elect Engn, Gwanak Gu, Seoul 151742, South Korea
[4] Agcy Def Dev, Taejon 300600, South Korea
关键词
navigation; aerial image; image matching; digital elevation model (DEM); recovered elevation map (REM); relative position estimation; absolute position estimation; robust-oriented Hausdorff measure;
D O I
10.1109/34.982881
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an integrated system for navigation parameter estimation using sequential aerial images, where navigation parameters represent the position and velocity information of an aircraft for autonomous navigation, The proposed integrated system is composed of two parts: relative position estimation and absolute position estimation. Relative position estimation recursively computes the current position of an aircraft by accumulating relative displacement estimates extracted from two successive aerial images, Simple accumulation of parameter values decreases the reliability of the extracted parameter estimates as an aircraft goes on navigating, resulting in a large position error. Therefore, absolute position estimation is required to compensate for the position error generated in relative position estimation. Absolute position estimation algorithms by image matching and digital elevation model (DEM) matching are presented. In image matching, a robust-oriented Hausdorff measure (ROHM) is employed, whereas in DEM matching the algorithm using multiple image pairs is used. Experiments with four real aerial image sequences show the effectiveness of the proposed integrated position estimation algorithm.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Real-time implementation of the relative position estimation algorithm using the aerial image sequence
    Kim, KS
    Park, JH
    Kim, RC
    Park, RH
    Lee, SU
    Kim, IC
    REAL-TIME IMAGING, 2002, 8 (01) : 11 - 21
  • [2] Dense height map estimation from oblique aerial image sequences
    Le Besnerais, G.
    Sanfourche, M.
    Champagnat, F.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 109 (02) : 204 - 225
  • [3] Position Estimation Using the Image Derivative
    Mortari, Daniele
    de Dilectis, Francesco
    Zanetti, Renato
    AEROSPACE, 2015, 2 (03): : 435 - 460
  • [4] POSITION ESTIMATION USING IMAGE DERIVATIVE
    Mortari, Daniele
    de Dilectis, Francesco
    Zanetti, Renato
    SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 2613 - 2632
  • [5] Target detection and position likelihood using an aerial image sensor
    Kim, ZuWhan
    Sengupta, Raja
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 59 - +
  • [6] Automated Aerial Refueling Position Estimation Using a Scanning LiDAR
    Curro, Joseph
    Raquet, John
    Pestak, Thomas
    Kresge, Jared
    Smearcheck, Mark
    PROCEEDINGS OF THE 25TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2012), 2012, : 774 - 782
  • [7] Robust Registration of Aerial Image Sequences
    Olson, Clark F.
    Ansar, Adnan I.
    Padgett, Curtis W.
    ADVANCES IN VISUAL COMPUTING, PT 2, PROCEEDINGS, 2009, 5876 : 325 - +
  • [8] Change detection in aerial image sequences
    Reno, AL
    Booth, DM
    IWISPA 2000: PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2000, : 113 - 118
  • [9] Multi-object Tracking in Aerial Image Sequences using Aerial Tracking Learning and Detection Algorithm
    Malagi, Vindhya P.
    Babu, Ramesh D. R.
    Rangarajan, Krishnan
    DEFENCE SCIENCE JOURNAL, 2016, 66 (02) : 122 - 129
  • [10] Design of an integrated aerial image sensor
    Xue, J
    Spanos, CJ
    Metrology, Inspection, and Process Control for Microlithography XIX, Pts 1-3, 2005, 5752 : 392 - 403