Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach

被引:75
|
作者
Sun, Tian Yin [1 ,2 ]
Conroy, Gulliver [3 ,4 ]
Donner, Erica [3 ]
Hungerbuehler, Konrad [2 ]
Lombi, Enzo [3 ]
Nowack, Bernd [1 ]
机构
[1] Technol & Soc Lab, Empa Swiss Fed Labs Mat Sci & Technol, CH-9014 St Gallen, Switzerland
[2] Swiss Fed Inst Technol, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
[3] Univ S Australia, CERAR, Mawson Lakes, SA 5059, Australia
[4] CRC CARE, Salisbury, SA 5106, Australia
基金
瑞士国家科学基金会; 澳大利亚研究理事会;
关键词
WASTE-WATER; OXIDE NANOPARTICLES; ZINC-OXIDE; SILVER; METAL; PARTICLES; DIGESTION; SLUDGE; FATE; NANO;
D O I
10.1039/c5en00004a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For the environmental risk assessment of engineered nanomaterials (ENM) knowledge about environmental concentrations is crucial. Soils and sediments are considered sinks for ENM and thus a better understanding of the spatial and temporal variability of concentrations is needed. In this work we use South Australia as a case study for a region with significant biosolids and treated wastewater application on soils, representing a system with almost "closed loops". The probabilistic material flow modelling approach was extended to include a temporal modelling of ENM production and biosolids handling and transfer onto soils, focusing on nano-TiO2, nano-ZnO, nano-Ag, Carbon Nanotubes(CNT) and fullerenes. The results thus not only incorporate the uncertainty on ENM flows but also the spatial and temporal variability of ENM concentrations between 2005 and 2012. The ENM concentrations in different waste amended soils vary by more than 2 orders of magnitude due to different biosolids and wastewater application rates. Because of the almost complete transformation of nano-ZnO and nano-Ag during wastewater treatment, we also modelled the total flows of Zn and Ag derived from the nanoparticles and compared their modelled concentrations to measured total Ag and Zn concentration in biosolids and soils in South Australia. The modelled Ag concentration derived from nano-Ag is 50-times smaller than measured Ag in soils and 10-times in biosolids. For Zn the respective values are 250 and 7. If in the future the accumulation continues with the same rate as in 2012 it would take about 170 years until a regulatory threshold value of 500 ug Ag per kg of soil would be reached. For Zn, it will take 930 years. The results from this modelling highlight that regional and site-specific conditions need to be considered when assessing the environmental risks of nanomaterials.
引用
收藏
页码:340 / 351
页数:12
相关论文
共 50 条
  • [1] Layered dynamic probabilistic networks for spatio-temporal modelling
    Bui, Hung H.
    Venkatesh, Svetha
    West, Geoff
    Intelligent Data Analysis, 1999, 3 (05): : 339 - 361
  • [2] Spatio-temporal hydrological modelling in a GIS environment
    Dayawansa, NDK
    De Silva, RP
    Taylor, JC
    REMOTE SENSING AND HYDROLOGY 2000, 2001, (267): : 433 - 438
  • [3] Spatio-temporal hydrological modelling in a GIS environment
    Dayawansa, N.D.K.
    De Silva, R.P.
    Taylor, J.C.
    IAHS-AISH Publication, 2000, (267): : 433 - 438
  • [4] An image warping approach to spatio-temporal modelling
    Aberg, S
    Lindgren, F
    Malmberg, A
    Holst, J
    Holst, U
    ENVIRONMETRICS, 2005, 16 (08) : 833 - 848
  • [5] An interchangeable approach for modelling spatio-temporal count data
    Chiogna, Monica
    Gaetan, Carlo
    ENVIRONMETRICS, 2010, 21 (7-8) : 844 - 862
  • [6] An Ontological Approach to Spatio-Temporal Information Modelling in Transportation
    Seliverstov, Alexey
    Rossetti, Rosaldo J. F.
    2015 IEEE FIRST INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2015,
  • [7] Prototype-Based Spatio-Temporal Probabilistic Modelling of fMRI Data
    Alowadi, Nahed
    Shen, Yuan
    Tino, Peter
    ADVANCES IN SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, WSOM 2016, 2016, 428 : 193 - 203
  • [8] Modelling of the spatio-temporal distribution of rat sightings in an urban environment
    Tamayo-Uria, Ibon
    Mateu, Jorge
    Diggle, Peter J.
    SPATIAL STATISTICS, 2014, 9 : 192 - 206
  • [9] Probabilistic spatio-temporal resource search
    Qing Guo
    Ouri Wolfson
    GeoInformatica, 2018, 22 : 75 - 103
  • [10] Probabilistic spatio-temporal resource search
    Guo, Qing
    Wolfson, Ouri
    GEOINFORMATICA, 2018, 22 (01) : 75 - 103