Approximating prediction error covariances among additive genetic effects within animals in multiple-trait and random regression models

被引:71
|
作者
Tier, B [1 ]
Meyer, K [1 ]
机构
[1] Univ New England, Anim Genet & Breeding Unit, Armidale, NSW 2351, Australia
关键词
D O I
10.1111/j.1439-0388.2003.00444.x
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
A method for approximating prediction error variances and covariances among estimates of individual animals' genetic effects for multiple-trait and random regression models is described. These approximations are used to calculate the prediction error variances of linear functions of the terms in the model. In the multiple-trait case these are indexes of estimated breeding values, and for random regression models these are estimated breeding values at individual points on the longitudinal scale. Approximate reliabilities for terms in the model and linear functions thereof are compared with corresponding reliabilities obtained from the inverse of the coefficient matrix in the mixed model equations. Results show good agreement between approximate and 'true' values.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 18 条
  • [1] Genetic evaluation of growth in Nellore cattle by multiple-trait and random regression models
    Nobre, PRC
    Misztal, I
    Tsuruta, S
    Bertrand, JK
    Silva, LOC
    Lopes, PS
    [J]. JOURNAL OF ANIMAL SCIENCE, 2003, 81 (04) : 927 - 932
  • [2] Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes
    Aspilcueta Borquis, Rusbel Raul
    de Araujo Neto, Francisco Ribeiro
    Baldi, Fernando
    Hurtado-Lugo, Naudin
    de Camargo, Gregorio M. F.
    Munoz-Berrocal, Milthon
    Tonhati, Humberto
    [J]. JOURNAL OF DAIRY SCIENCE, 2013, 96 (09) : 5923 - 5932
  • [3] Analyses of growth curves of Nellore cattle by multiple-trait and random regression models
    Nobre, PRC
    Misztal, I
    Tsuruta, S
    Bertrand, JK
    Silva, LOC
    Lopes, PS
    [J]. JOURNAL OF ANIMAL SCIENCE, 2003, 81 (04) : 918 - 926
  • [4] Comparison between multiple-trait and random regression models for genetic evaluation of weight traits in Australian meat sheep
    Paneru, Uddhav
    Moghaddar, Nasir
    van der Werf, Julius
    [J]. JOURNAL OF ANIMAL SCIENCE, 2024, 102
  • [5] Modeling lactation curves and estimation of genetic parameters in Holstein cows using multiple-trait random regression models
    Kheirabadi, Khabat
    Rashidi, Amir
    Alijani, Sadegh
    Imumorin, Ikhide
    [J]. ANIMAL SCIENCE JOURNAL, 2014, 85 (11) : 925 - 934
  • [6] Estimation of genetic parameters and trends for growth traits in Hays Converter cattle using multiple-trait and random regression models
    Khorshidi, R.
    MacNeil, M. D.
    Hays, D. P.
    Abo-Ismail, M. K.
    Crowley, J. J.
    Akanno, E. C.
    Wang, Z.
    Plastow, G.
    [J]. LIVESTOCK SCIENCE, 2020, 241
  • [7] Evaluating genetic parameters and trends of weight traits for the Hays Converter beef breed by multiple-trait and random regression models
    Khorshidi, R.
    MacNeil, M.
    Hays, D.
    Abo-Ismail, M.
    Crowley, J.
    Akanno, E.
    Wang, Z.
    Plastow, G.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2018, 96 : 60 - 61
  • [8] Genetic parameters for a multiple-trait multiple-lactation random regression test-day model in Italian Holsteins
    Muir, B. L.
    Kistemaker, G.
    Jamrozik, J.
    Canavesi, F.
    [J]. JOURNAL OF DAIRY SCIENCE, 2007, 90 (03) : 1564 - 1574
  • [9] Computing options for multiple-trait test-day random regression models while accounting for heat tolerance
    Aguilar, I.
    Tsuruta, S.
    Misztal, I.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2010, 127 (03) : 235 - 241
  • [10] Multiple-trait, random regression, and compound symmetry models for analyzing multi-environment trials in maize breeding
    Ferreira Coelho, Igor
    Peixoto, Marco Antonio
    Santana Pinto Coelho Evangelista, Jeniffer
    Silva Alves, Rodrigo
    Sales, Suellen
    de Resende, Marcos Deon Vilela
    Naves Pinto, Jefferson Fernando
    Fialho dos Reis, Edesio
    Bhering, Leonardo Lopes
    [J]. PLOS ONE, 2020, 15 (11):