Fat fractal percolation and k-fractal percolation

被引:0
|
作者
Broman, Erik I. [1 ]
van de Brug, Tim [2 ]
Camia, Federico [2 ]
Joosten, Matthijs [2 ]
Meester, Ronald [2 ]
机构
[1] Uppsala Univ, Inst Matemat, S-75106 Uppsala, Sweden
[2] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
Fractal percolation; random fractals; crossing probability; critical value; CONNECTIVITY PROPERTIES; BEHAVIOR;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two variations on the Mandelbrot fractal percolation model. In the k-fractal percolation model, the d-dimensional unit cube is divided in N-d equal subcubes, k of which are retained while the others are discarded. The procedure is then iterated inside the retained cubes at all smaller scales. We show that the (properly rescaled) percolation critical value of this model converges to the critical value of ordinary site percolation on a particular d-dimensional lattice as N -> infinity. This is analogous to the result of Falconer and Grimmett (1992) that the critical value for Mandelbrot fractal percolation converges to the critical value of site percolation on the same d-dimensional lattice. In the fat fractal percolation model, subcubes are retained with probability p(n) at step n of the construction, where (p(n))(n >= 1) is a non-decreasing sequence with Pi(infinity)(n=1) p(n) > 0. The Lebesgue measure of the limit set is positive a.s. given non-extinction. We prove that either the set of connected components larger than one point has Lebesgue measure zero a.s. or its complement in the limit set has Lebesgue measure zero a.s.
引用
收藏
页码:279 / 301
页数:23
相关论文
共 50 条
  • [1] Fractal percolation is unrectifiable
    Buczolich, Zoltan
    Jarvenpaa, Esa
    Jarvenpaa, Maarit
    Keleti, Tamas
    Poyhtari, Tuomas
    [J]. ADVANCES IN MATHEMATICS, 2021, 390
  • [2] PERCOLATION ON FRACTAL LATTICES
    HAVLIN, S
    BENAVRAHAM, D
    MOVSHOVITZ, D
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (26) : 2347 - 2350
  • [3] VISIBILITY AND FRACTAL PERCOLATION
    Jarvenpaa, Maarit
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (5-6): : 451 - 459
  • [4] The k-fractal of a simplicial complex
    Brown, JI
    Hickman, CA
    Nowakowski, RJ
    [J]. DISCRETE MATHEMATICS, 2004, 285 (1-3) : 33 - 45
  • [5] PERCOLATION AND INVASION PERCOLATION AS FRACTAL GROWTH PROBLEMS
    PIETRONERO, L
    SCHNEIDER, WR
    STELLA, AL
    [J]. PHYSICAL REVIEW A, 1990, 42 (12): : 7496 - 7499
  • [6] Fractal Percolation, Porosity, and Dimension
    Changhao Chen
    Tuomo Ojala
    Eino Rossi
    Ville Suomala
    [J]. Journal of Theoretical Probability, 2017, 30 : 1471 - 1498
  • [7] GEOMETRIC FUNCTIONALS OF FRACTAL PERCOLATION
    Klatt, Michael A.
    Winter, Steffen
    [J]. ADVANCES IN APPLIED PROBABILITY, 2020, 52 (04) : 1085 - 1126
  • [8] ON THE ABSENCE OF DIRECTED FRACTAL PERCOLATION
    CHAYES, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10): : L295 - L301
  • [9] Fractal Percolation, Porosity, and Dimension
    Chen, Changhao
    Ojala, Tuomo
    Rossi, Eino
    Suomala, Ville
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (04) : 1471 - 1498
  • [10] PERCOLATION AS A FRACTAL GROWTH PROBLEM
    PIETRONERO, L
    STELLA, A
    [J]. PHYSICA A, 1990, 170 (01): : 64 - 80