Optimal control of MIMO input-quadratic nonlinear systems

被引:0
|
作者
Sassano, M. [1 ]
Astolfi, A. [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Via Politecn 1, I-00133 Rome, Italy
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
欧盟地平线“2020”;
关键词
STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the infinite-horizon optimal control problem for nonlinear, multi-input, input-quadratic systems. It is shown that optimality of the input-quadratic closed-loop system is intimately related to the property that an auxiliary input-affine system possesses a L-2-gain smaller than one. Such equivalence is established, or approximated, by relying on (a combination of) three alternative sets of technical conditions based (i) on the inclusion of the gradient of the underlying storage function in a certain co-distribution, (ii) on verifying specific algebraic inequalities, (iii) or achieved dynamically by considering the immersion of the original nonlinear plant into a system defined on an augmented state-space.
引用
收藏
页码:3328 / 3333
页数:6
相关论文
共 50 条
  • [1] Optimality and Passivity of Input-Quadratic Nonlinear Systems
    Sassano, Mario
    Astolfi, Alessandro
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (08) : 3229 - 3240
  • [2] Optimal control for polynomial quadratic systems with linear input
    Basin, MV
    Alcorta-García, A
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 1 : 107 - 112
  • [3] Optimal control of uncertain nonlinear quadratic systems
    Merola, Alessio
    Cosentino, Carlo
    Colacino, Domenico
    Amato, Francesco
    [J]. AUTOMATICA, 2017, 83 : 345 - 350
  • [4] Optimal control of quadratic functionals for affine nonlinear systems
    M.Popescu
    A.Dumitrache
    [J]. Theoretical & Applied Mechanics Letters, 2012, 2 (04) : 60 - 63
  • [5] Optimal control of quadratic functionals for affine nonlinear systems
    Popescu, M.
    Dumitrache, A.
    [J]. THEORETICAL AND APPLIED MECHANICS LETTERS, 2012, 2 (04)
  • [6] A Formal Solution of the Quadratic Optimal Control for Nonlinear Systems
    Rusnak, Ilan
    Levy, Maital
    [J]. 2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 1019 - 1023
  • [7] Linear quadratic optimal control of singular nonlinear systems
    Zhu, JD
    Zhu, SQ
    Cheng, ZL
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2698 - 2699
  • [8] Adaptive Performance Control for Input Constrained MIMO Nonlinear Systems
    Trakas, Panagiotis S.
    Bechlioulis, Charalampos P.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, : 7733 - 7745
  • [9] Adaptive Control of a Class of MIMO Nonlinear Systems with Input Saturation
    Huang, Jiangshuai
    Hu, Rui
    Gao, Tingting
    Zhou, Yong
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 7752 - 7756
  • [10] Adaptive tracking control for input delayed MIMO nonlinear systems
    Zhu, Qing
    Zhang, Tianping
    Fei, Shumin
    [J]. NEUROCOMPUTING, 2010, 74 (1-3) : 472 - 480