(2, t)-choosable graphs

被引:0
|
作者
Ruksasakchai, Watcharintorn [1 ]
Nakprasit, Kittikorn [1 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (k, t)-list assignment L of a graph G assigns a list of k colors available at each vertex v in G and vertical bar boolean OR(v is an element of V(G)) L(v)vertical bar = t. An L-coloring is a proper coloring c such that c(v) is an element of L(v) for each v is an element of V (G). A graph G is (k, t)-choosable if G has an L-coloring for every (k, t)-list assignment L. Erdos, Rubin, and Taylor proved that a graph is (2, t)-choosable for any t >= 2 if and only if a graph does not contain some certain subgraphs. Chare-onpanitseri, Punnim, and Uiyyasathian proved that an n-vertex graph is (2, t)-choosable for 2n - 6 <= t <= 2n - 4 if and only if it is triangle-free. Furthermore, they proved that a triangle-free graph with n vertices is (2,2n - 7)-choosable if and only if it does not contain K-3,K-3 - e where e is an edge. Nakprasit and Ruksasakchai proved that an n-vertex graph G that does not contain C-5 V Kk-2 and Kk+1 for k >= 3 is (k,kn - k(2) - 2k)-choosable. For a non-2-choosable graph G, we find the minimum t(1) >= 2 and the maximum t(2) such that the graph G is not (2, t(i))-choosable for i = 1,2 in terms of certain subgraphs. The results can be applied to characterize (2, t)-choosable graphs for any t.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 50 条
  • [1] On (4,2)-Choosable Graphs
    Meng, Jixian
    Puleo, Gregory J.
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2017, 85 (02) : 412 - 428
  • [2] A characterization of (4,2)-choosable graphs
    Cranston, Daniel W.
    JOURNAL OF GRAPH THEORY, 2019, 92 (04) : 460 - 487
  • [3] Degree choosable signed graphs
    Schweser, Thomas
    Stiebitz, Michael
    DISCRETE MATHEMATICS, 2017, 340 (05) : 882 - 891
  • [4] On chromatic-choosable graphs
    Ohba, K
    JOURNAL OF GRAPH THEORY, 2002, 40 (02) : 130 - 135
  • [5] Injectively (Δ+1)-choosable graphs
    Kim, Seog-Jin
    Park, Won-Jin
    ARS COMBINATORIA, 2013, 112 : 449 - 457
  • [6] A Simple Characterization of Proportionally 2-choosable Graphs
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    Pelsmajer, Michael J.
    Reiniger, Benjamin
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 679 - 687
  • [7] A Simple Characterization of Proportionally 2-choosable Graphs
    Hemanshu Kaul
    Jeffrey A. Mudrock
    Michael J. Pelsmajer
    Benjamin Reiniger
    Graphs and Combinatorics, 2020, 36 : 679 - 687
  • [8] A -choosable theorem on planar graphs
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 927 - 940
  • [9] Graphs are (1, Δ+1)-choosable
    Ding, Laihao
    Duh, Guan-Huei
    Wang, Guanghui
    Wong, Tsai-Lien
    Wu, Jianliang
    Yu, Xiaowei
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2019, 342 (01) : 279 - 284
  • [10] Chromatic λ-choosable and λ-paintable graphs
    Zhu, Jialu
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2021, 98 (04) : 642 - 652