The classical discontinuous Galerkin method for a general parabolic equation is analyzed. Symmetric error estimates for schemes of arbitrary order are presented. The ideas developed below relax many assumptions required in previous work. For example, different discrete spaces may be used at each time step, and the spatial operator need not be self-adjoint or independent of time. Our error estimates are posed in terms of projections of the exact solution onto the discrete spaces and are valid under the minimal regularity guaranteed by the natural energy estimate. These projections are local and enjoy optimal approximation properties when the solution is sufficiently regular.
机构:
UK Praze, Katedra Numer Matemat, Matemat Fyzikalni Fak, Sokolovska 83, Prague 18675 8, Czech RepublicUK Praze, Katedra Numer Matemat, Matemat Fyzikalni Fak, Sokolovska 83, Prague 18675 8, Czech Republic
Sebestova, Ivana
Dolejsi, Vit
论文数: 0引用数: 0
h-index: 0
机构:
UK Praze, Katedra Numer Matemat, Matemat Fyzikalni Fak, Sokolovska 83, Prague 18675 8, Czech RepublicUK Praze, Katedra Numer Matemat, Matemat Fyzikalni Fak, Sokolovska 83, Prague 18675 8, Czech Republic
Dolejsi, Vit
[J].
PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15,
2010,
: 158
-
163
机构:
Virginia Tech, Kevin T Crofton Dept Aerosp & Ocean Engn, 215 Randolph Hall, 460 Old Turner St, Blacksburg, VA 24061 USAVirginia Tech, Kevin T Crofton Dept Aerosp & Ocean Engn, 215 Randolph Hall, 460 Old Turner St, Blacksburg, VA 24061 USA
Wang, Hongyu
Roy, Christopher J.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Kevin T Crofton Dept Aerosp & Ocean Engn, 215 Randolph Hall, 460 Old Turner St, Blacksburg, VA 24061 USAVirginia Tech, Kevin T Crofton Dept Aerosp & Ocean Engn, 215 Randolph Hall, 460 Old Turner St, Blacksburg, VA 24061 USA