Kazantsev dynamo in turbulent compressible flows

被引:9
|
作者
Afonso, Marco Martins [1 ]
Mitra, Dhrubaditya [2 ,3 ]
Vincenzi, Dario [4 ]
机构
[1] Univ Porto, Fac Ciencias, Ctr Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[2] KTH Royal Inst Technol, Nordita, Stockholm, Sweden
[3] Stockholm Univ, Stockholm, Sweden
[4] Univ Cote dAzur, CNRS, LJAD, F-06100 Nice, France
基金
瑞典研究理事会;
关键词
dynamo theory; compressible turbulence; Kazantsev model; MAGNETIC-FIELDS; PASSIVE SCALAR; INTERMITTENCY;
D O I
10.1098/rspa.2018.0591
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the kinematic fluctuation dynamo problem in a flow that is random, white-in-time, with both solenoidal and potential components. This model is a generalization of the well-studied Kazantsev model. If both the solenoidal and potential parts have the same scaling exponent, then, as the compressibility of the flow increases, the growth rate decreases but remains positive. If the scaling exponents for the solenoidal and potential parts differ, in particular if they correspond to typical Kolmogorov and Burgers values, we again find that an increase in compressibility slows down the growth rate but does not turn it off. The slow down is, however, weaker and the critical magnetic Reynolds number is lower than when both the solenoidal and potential components display the Kolmogorov scaling. Intriguingly, we find that there exist cases, when the potential part is smoother than the solenoidal part, for which an increase in compressibility increases the growth rate. We also find that the critical value of the scaling exponent above which a dynamo is seen is unity irrespective of the compressibility. Finally, we realize that the dimension d = 3 is special, as for all other values of d the critical exponent is higher and depends on the compressibility.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The Kraichnan–Kazantsev Dynamo
    D. Vincenzi
    [J]. Journal of Statistical Physics, 2002, 106 : 1073 - 1091
  • [2] Dynamo action in turbulent flows
    Archontis, V
    Dorch, SBF
    Nordlund, Å
    [J]. ASTRONOMY & ASTROPHYSICS, 2003, 410 (03) : 759 - 766
  • [3] Dynamo action in turbulent flows
    Archontis, V
    Nordlund, Å
    [J]. SOLMAG 2002: PROCEEDINGS OF THE MAGNETIC COUPLING OF THE SOLAR ATMOSPHERE EUROCONFERENCE AND IAU COLLOQUIUM 188, 2002, 505 : 95 - 99
  • [4] Dynamo action in turbulent flows
    [J]. Archontis, V. (vasilis@ll.iac.es), 1600, EDP Sciences (410):
  • [5] The Kraichnan-Kazantsev dynamo
    Vincenzi, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (5-6) : 1073 - 1091
  • [6] Non-Gaussian Generalization of the Kazantsev-Kraichnan Model for a Turbulent Dynamo
    Kopyev, A., V
    Kiselev, A. M.
    Il'yn, A. S.
    Sirota, V. A.
    Zybin, K. P.
    [J]. ASTROPHYSICAL JOURNAL, 2022, 927 (02):
  • [7] THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
    Federrath, Christoph
    Schober, Jennifer
    Bovino, Stefano
    Schleicher, Dominik R. G.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2014, 797 (02)
  • [8] DNS of Compressible Turbulent Flows
    Friedrich, Rainer
    Ghosh, Somnath
    [J]. DIRECT AND LARGE-EDDY SIMULATION VII, 2010, 13 : 553 - 563
  • [9] Helicity transfer in compressible turbulent flows
    Yan, Zheng
    Wu, Junfeng
    Lei, Zhu
    Wang, Jianchun
    Wang, Lifeng
    Li, Xinliang
    Yu, Changping
    [J]. PHYSICAL REVIEW FLUIDS, 2024, 9 (09):
  • [10] NUMERICAL SIMULATIONS OF TURBULENT COMPRESSIBLE FLOWS
    POUQUET, A
    PASSOT, T
    LEORAT, J
    [J]. IAU SYMPOSIA, 1991, (147): : 101 - 118