Multilevel fusion-based intrustion detection

被引:0
|
作者
de Boer, R [1 ]
van den Berg, J [1 ]
van Ginkel, W [1 ]
机构
[1] SemLab, NL-2333 AL Leiden, Netherlands
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Shortcomings of current intrusion detection systems, most notably high false alarm rates and insufficient attack detection accuracy, call for a structured, sophisticated approach. We identify multi-sensor data fusion as such an approach and present a multilevel intrusion detection system architecture. At each level, logically independent functional units combine the data or information from various sources using the technique of data fusion. In this way. each unit contributes to the overall quality of the intrusion detection system. We present the set of functional tasks to be performed, their hierarchical relationships. and sketch the way the units should work together. The corresponding multilevel 'blackboard' architecture can be used as starting point for implementing next generation high quality intrusion detection systems 1.
引用
收藏
页码:375 / 377
页数:3
相关论文
共 50 条
  • [1] Multilevel Information Fusion-Based Change Detection for Multiangle PolSAR Images
    Zou, Bin
    Li, Haolin
    Zhang, Lamei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Multilevel Feature Fusion-Based GCN for Rumor Detection with Topic Relevance Mining
    Chen, Shenyu
    Li, Meng
    Yang, Weifeng
    [J]. ADVANCES IN MULTIMEDIA, 2023, 2023
  • [3] SCMACDnet: multilevel fusion-based deep twin capsule network for change detection
    Venugopal, N.
    [J]. MULTIMEDIA SYSTEMS, 2023, 29 (03) : 1377 - 1389
  • [4] SCMACDnet: multilevel fusion-based deep twin capsule network for change detection
    N. Venugopal
    [J]. Multimedia Systems, 2023, 29 : 1377 - 1389
  • [5] Multisensor fusion-based gas detection module
    Guo J.-H.
    Chien I.-C.
    Su K.-L.
    Wu C.-J.
    [J]. Artificial Life and Robotics, 2011, 16 (1) : 16 - 20
  • [6] A Data Fusion-Based Fire Detection System
    Ting, Ying-Yao
    Hsiao, Chi-Wei
    Wang, Huan-Sheng
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (04): : 977 - 984
  • [7] MSFYOLO: Feature fusion-based detection for small objects
    Song, Ziying
    Zhang, Yu
    Liu, Yi
    Yang, Kuihe
    Sun, Meiling
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (05) : 823 - 830
  • [8] Signal Fusion-based Detection with an Intuitive Weighting Method
    Lu, Jing
    Zhou, Shenghua
    Wang, Jianlai
    Li, Dawei
    Feng, Tieshan
    Liu, Hongwei
    Ma, Hui
    [J]. 2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [9] Sensor Fusion-Based Line Detection for Unmanned Navigation
    Chun, Changmook
    Suh, SeungBeum
    Roh, Chi-won
    Kang, Yeonsik
    Kang, Sungchul
    Lee, Jung-yup
    Han, Chang-soo
    [J]. 2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 191 - 196
  • [10] nMultiscale Feature Fusion-Based Object Detection Algorithm
    Tao, Zhang
    Le, Zhang
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (02)